Rhapsody

Frameworks and Operating Systems Reference

Rational Rhapsody
Frameworks and Operating Systems
Reference

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to IBM® Rational® Rhapsody® 7.5 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

Frameworks and Operating Systems 1
Real-Time FrameworKs e e e 1
Rational Rhapsody Statecharts 2
The Object Execution Framework (OXF). e e 3
Working with the Object Execution Framework e 3
The OXF Library. e e e e e 4
Rational Rhapsody Applications and the RTOS. i i 5
Operating System Abstraction Layer (OSAL). i e 5
Threadso 7
StACK SiZE . . . 7
SYNChroNIzation SEIVICES. o 8
MeESSAgE QUEUES o ittt et ettt e e e 8
CommUNICAtION POrt. . . . oo 9
TIMEr SEIVICE . . . e 10
Real-time Operating System (RTOS) i e 11
AbstractLayer Package (OSAL)o e e 11
ClaS S S . . oot 12
OSWrappers PaCKage oot e e e e 12
Adapting Rational Rhapsody foraNew RTOS e e 13
RUN-TIME SOUICES . . . oottt e e e e e e e e e 13
Adding the New Adapler 13
Creating the Batch File and Makefiles. s 14
Sample <env>build.mak File e 15
Creating New Makefiles e 16
OXF VBISIONS .« v vttt ettt et e e e 16
Animation Libraries. 16
Implementing the Adapter ClassSesttt e e e e e e e 18
Modifying rawtypes.h e 19
Other Operating System-Related Modifications. 19
Building the Framework Libraries e 20

Rational Rhapsody

Table of Contents

Building the C or C++ Framework for Windows Systems, 20
Building the Ada Framework 21
Building the Java Framework. e 22
Building the Framework for Solaris Systems 22
Creating Properties for aNew RTOS e e 24
Modifying the site<lang>.prp Files 24
Setting the ENVIrONMENt e 26
Configuring the OXF Properties for the C++ Framework 27
Validating the New Adapter e e e e 30
Modifying the Framework 31
Implementing the Abstract Factory. e 31
Plugging in the Factory. 31
OSAL Methods. e 34
The OSAL ClasSes . .. oot e 37
Rational Rhapsody Developer for C e 38
RICOSCoNNnectionPort Classo 39
RICOSEventFlag Interface. e 45
RICOSMeSSageQuUEUE Class.ttt e e e e e e e 50
RICOSMULEX Classot e e e e e e e 59
RICOSOXF Class. . . .ttt e e e e e e 64
RICOSSemaphore Classo e e e 67
RICOSSOCKEt Class e e 73
RICOSTaSK Classo e e 80
RIC O S TIME . . .ottt e e 93
RICHANAIECIOSEr Classot e e 97
Rational Rhapsody Developer for C++ e e 98
OMEVENtQUEUE Classo o ot e e 98
OMMessageQueue Classt 100
OMOS Class . . ittt e 100
OMOSCOoNNECHiONPOIt Class oot e e 102
OMOSEVeNtFlag Classo 105
OMOSFACtOry Class . .. oo e e e e e e 108
OMOSMessageQueUE Class.o oot 117
OMOSMULEX ClaSS. . . oot it e e e e 123
OMOSSEMApPhore Class oot e 126
OMOSSOCKEt Class . . . o oo e e 129
OMOSTHhread Class. . . . oot e e e e 133
OMOSTIMEr Classttt e e e e 139
OMTMMessageQueUe Class.ottt e e e e e e 140

ii Frameworks and Operating Systems Reference

Table of Contents

Rebuilding the Rational Rhapsody Framework 145
Boorland 145
INTEG RITY . e e e e 146
Compiling and Building a Rational Rhapsody Sample. 147
Downloading the Image and Running the Application 148
T 154
Building the Linux Libraries e e 154
Creating and Running Linux Applications i 155
MU NG L L e 156
Stepping Through the Generated Application Using MultiWin32. 156
Stepping Through the OXF Using MULTI e e 158
OSE . o 159
Rebuilding the Framework 159
Using Command-Line Attributesand Flags i 159
Editingthe Batch Files e e 160
N X e 161
USINg MOMENTICSo e e e e 162
USINg D . . . 162
Message Queue Implementation e 163
X OIS e 164
Integrated Development Environment (IDE). 165
DEfINES . . e 165
SHUCHUNES . . . o oo e e e 165
Makefiles 167
Creating a Make.bat File 167
Running the Batch File 167
Redefining Makefile-Related Properties e e 168
Redefining the MakeFileContent Property e 169
Targel TYPE . . 170
Compilation Flags.o e e e 170
Commands Definitionso 171
Generated MaCIOS oot 172
Predefined MacCroS 173
Generated DependenCiesttt 173
Makefile Linking INStructions e 174
JaVA USBIS . o e 175
Active Behavior Framework 177

Rational Rhapsody iii

Table of Contents

Active and Reactive ClasSes i 177
OMREACHIVE Class ot e 179
OMThread Classt e e e e 181
OMMainThread Classt e e 181
OMDElaY Classo 181
OMProtected Classo ot e 182
OMGUANd Class . . ottt et e e 182
OMEVENT ClasSS . ..ttt e e e e e 182
OMTIMEOUL Classottt e e e e 183
OMTImerManager Classo e e e e e e 183
Customizing Timeout Manager Behavior 184
OMThreadTimer Class. oo e e 184
OMTimerManagerDefaults Class. i e e e e i 184
Services Package 185
MemoryManagement PacKaget 185
Containers Packaget 185
Event Handling 189
BV ONES . o o 189
Generating and Queuing an EVENt. 190
Dispatching an EVENto 191
Canceling a Single EVeNt. e e 192
Canceling All Eventsto a Destination e 192
Dispatching a Triggered Operation i e e 193
T EOULS. . o o o 194
Scheduling @ TIMEOUL.ot e e e 195
Dispatching a TIMeOUL o 196
Unscheduling @ TImeOUL.ot 197
Delaying @ TImEOULttt e e e e e e 197
Analyzing and CUStOMIzZINGottt 199
Model-level Debugging and AnalysSis 199
Customizing the Framework 201
The Rational Rhapsody Interrupt-Driven Framework (IDF) 203
Creating a Sample IDF Project i 203
Adapting the Framework for a Specific Target. i 209

iv Frameworks and Operating Systems Reference

Table of Contents

Limitations of the IDF 210
OXF Classes and Methods 211
OMADbstractMemoryAllocator Classo it e e e e 212
~OMADbStractMemoryAlloCatort e 212
alloCPOOL. . . . 213
callMemoryPoOIISEMPLY 213
OEtMBIMOTY . . o o 214
INEAtEP OOl 214
OMSelfLinkedMemoryAllOCatoro e e e e 215
FEIUINM IO . . . oo e e et e e e 215
SELAIIOCALON. e e 216
SetINCrEMENtNUM e 216
OMADstractTickTimerFactory Class e 217
createRealTImMETIMEr. . . . e e e e 217
createSimulatedTimeTIMer e e 218
TimerManagerCallBack e 219
OMANASEAte Classt 219
OMANG S ALE.t 219
LOCK . o 220
UNIOCK. .« . 220
OMCOllection Class.t e e e 221
OMCOIIECHION . . .o 222
~OMCOIlECHION . . . 222
A . 223
AAOAL . . 223
FEIMIOVE . . ottt et ettt e e e e 224
FEMOVEAIl . . 225
FEMOVEBYINGEX . . . 226
FEOFQANIZE . . ottt et et e 226
OMComponentState Classottt 227
OMCOMPONENESIALE. e 228
BN S A, 228
I o 228
TAKEEVENt . . . 229
OMDElAY ClaSS. . . .ttt e 230
OMDEIAY . . .ttt 231
~OMDEIAY . .o 231
WaAKEUD .« ettt e e e e 232
OMEVENE ClaSS . ottt e e 233
AU DULES . . . oo 236

Rational Rhapsody v

Table of Contents

CONS ANIS o e e 237
OMEVENT . . e 238
~OMEVENT . . . 239
DIt . . oot e 240
EIDESHNALIONttt 240
0 =T L] o 241
iIsSCancelledTimeouUt e 242
ISDeElete AIErCONSUME ot e e 242
ISFrameworkKEVENt e 243
ISREAIEVENL e 244
ISTIMBOUL . . . oottt e e 244
ISTYPEOS . . e e e 245
setDelete AfIErCONSUMIE e e 246
SEEDESHNALION. . . .o e 247
setFrameworkEVENt 247
S, . . 248
OMFINalState Classottt e e e e e e 249
OMFEINalState e 250
[0 = (0 o7 T o 251
OMFriendStartBehaviorEvVent Classottt e 252
OMFriendStartBehaviorEVent e e 252
CSEHAliZE . . e 253
OBIEVENICIASS . . . o oo e 253
SEHAlIZE . .t 254
OMFriendTimeout Class oottt e e e e e e e 255
OMFrENdTimMEOUL . . .o e e 255
CSEAliZE ... 256
OEtEVENICIASS 256
SENAlIZE . .t e 257
OMGUAId Class . . .t it e e e 258
OMGUAIT . . .t e 261
~OMGUAId . . . oo e 261
QEIGUAIT . .. e 262
JOCK . o e 262
UNIOCK . oot e 262
OMHEAD ClasS . . . oottt e e e 263
OMHEAD . . . oo 264
~OMHEAP . . . 264
A . . 265
N .o 265
SEMPLY. . .o 266
LB IOV .« . o ittt e e e e e e e e 266

Vi Frameworks and Operating Systems Reference

Table of Contents

1] o 267
L2 267
UPAALE . .. 267
OMINFINItELOOP Class . . . oottt e e e e 268
OMUIErator Class . . oottt e e e e e e 268
OMIEIatOr . . . o e 269
[0 1= > (0] g 269
OB A0 . L o o 270
1T =1 0.0 = | 270
FES L . . o 271
ValUB. . . e e 271
OMLEafState Class e e 272
OMLEATSIAtE it e 273
BN . L L 273
ST (]] = = 274
EXIE S At . . . e e e 274
] 274
SENAlIZE S AIES . . . i 275
OMLISE ClaSs . . ittt e 276
OM LISt . o 279
~OMULISE . .o 279
(o] o =1 =1 o1 1 [280
= 10 [0 280
AAAAL . e e 281
AAARITSt . L e e 282
N . 283
OO AL, . o o 283
OEICOUNT. . . oot 284
[0 (@ 1 = | 284
OBTFIESt . L o 285
QEtRIrSICONCEPL . . o o ot 285
etLaST . . . o 286
e LaSICONCEPL . . .ot 286
OIN XL, o oot e e e 287
SEMPLY. . .o 287
TEMOVEFIISt L L L 288
L= 1010 1Y 288
FEMOVEAIl 289
FEMOVEFIISt . . o e 289
FEMOVEI M . . e e 290
FEMOVELAST. e 291
OMLIStItEM Class . .. i e e e 292

Rational Rhapsody Vi

Table of Contents

OM LIS M . . 292
CONNECTT 0. . . oot 293
OEtN XL . . oo 293
OMMainThread Classo e e e e 294
~OMMaINThread 295
deStroyThreado e 295
S = o = 295
L] 1 296
OMMaAP ClaSS . . ittt it e e e 297
O, . 301
~OMM D . 301
(o] o 1= =1 (o) 1 [302
A . 303
L1 304
OO AL, ot e e e 304
OELCOUNT. . . o 305
O K BY . oo 305
5] =117 0] 7 306
0OKUD . . e e 306
1] 010103 307
FEMOVEAIl . . . 308
OMMaAPItEM Class . . .ottt e e e e 309
OMMaPI e . 309
~OMMaAPI M . . 310
[0 =] (@] o =T o | 310
OMMemoryManager Classot e e e e e e e e 311
OMMEMOIYMaANAGET . . o v e e ettt e e e e e 314
~OMMEMOIYMaANAGET . . o o ettt e e 314
getDefaultMemoryManagerottt 315
OEtMBIMOTY . . o o 316
getMEemMOrYMaNaQEr e 316
FEIUMNMEBIMOTY . . . oo e 317
OMMemoryManagerSwitchHelper Class. e 318
OMMemoryManagerSwitChHelper e e e 319
~OMMemoryManagerSwitchHelper. 319
CleanUP. . ..o 320
INAMEMOrY. . . . e 320
NS ANCE . . . e e 321
ISLOGE MY . . o 321
recordMemoryAllOCatioN. e 322
recordMemoryDeallocation 323
setUpdateState. e 324

Viii Frameworks and Operating Systems Reference

Table of Contents

shouldUpdate o 324
OMNOLIfIEr Classo e e e e e e 325
NOtITY TOEIIOr. . . o o 325
NOLIfY TOOULPUL o e 326
OMOI S ate ClasS . . . oottt et e e e e e e 327
OMOI S atE e 328
BN . L L 328
ST (=T] = = 328
EXIE S At . . . o e e 329
getSUD S ate . . . 329
] 330
SENAlIZE S AIES . . . i 330
SEESUD S At . . . 331
OMProtected Classottt e e e 332
OMPIOtECIEd . . . ot 333
~OMPIOtECtEd e e 334
deleteMULEX . . . o e e 334
L. 334
QEIGUAIA . . .ot 335
INtAliZEMULEX. . . . 335
LOCK . . o 336
UNIOCK . .« oot e e 336
OMOUEUE ClaSS . . .ottt e e e e e e e e 337
OMOQUEBUE. . . .ttt e e e e e 341
~OMOUEBUE. . . ot e e e e e 341
OB oo 342
OELCOUNT. . . oo 342
0etINVEISEQUEBUE ittt 343
OIQURBUE . . .ttt e e 343
OBLSIZE . o o 344
INCreaseHEead 344
INCreaseTallo 344
S E MDY . . . e e 345
ISFUIL. e e 345
PUL L oo e e 346
OMREACHIVE Class . . . oot e e 347
OMREBACHIVE . . . ot e e e 357
~OMREACHVEot e 357
CANCEIEVENIS . . . e 358
CONSUMIEEVENT e e e e e e e e e e 358
disCarnateTimeEOULt e e 360
JOBUSY . . oo 361

Rational Rhapsody iX

Table of Contents

0 =] 361
1= 0 364
getCUITENTEVENT 365
getThread . . .o 365
handleEventNotCoNSUMEd e 366
handleTONOtCONSUME.o e e e e e e 367
INCAMMAtETIMEOULo et e e e 368
INNUICONSiIg . . .o 369
S ATV . . oo e 370
ISBUSY . . o 370
ISCUMENIEVENT e 371
ISFrameworkINStanCe 372
ISIN DO . . . ot 373
ISValid. . . o e 373
POPNUIICONfIG. . . oo e 374
PUShNUIICONTIG . . . oo 375
registerWithOMREACHVE e e e e e e 375
rootState _disSpatChEVENt e 376
rootState_entDef 377
rootState_serializeStates 378
rUNTOCOMPIELION 379
SENAlIZE S AIES . . . it 379
setCompleteStartBehavior e 380
SEIEVENIGUAI . . . 380
SetFrameworkINStanCe e 381
SEUNDIOr. . . . e 382
SEIMaXNUISIEPS . . .ot 382
setShouldDelete. 383
SetShouldTerminateo 384
SEtTRrEAd 385
SetToGUArdREaCHIVE e 386
shouldCompleteRUN. e 387
shouldCompleteStartBehavior 388
shouldDelete e 389
shouldTerminate. 390
StatBENAVIOr 391
TAKEEVENT . . .o 392
1221 I T T 1= 393
LEIMINALE . . . o 394
UNOBUSY . . oo 395
OMSACK ClasS. . ottt e 396
O S ACK. . . ot e 396
~OMSACK. . . o 397
DI OUNL. . . e e e e e 397

X Frameworks and Operating Systems Reference

Table of Contents

SEMPLY. . . 398
0] o 398
PUSH 399
L0 399
OMStartBehaviorEvent Class. e e 400
Animating Start Behavior e 400
OMStartBehaviorEVeNt. 400
OMState ClaSS . . ottt 401
O S A . . .ttt e 403
BNEDE . L L 403
ENtHIS . . L 403
=T (= 57 - L= 404
XIS A 404
[0 = (0 o7 T o 404
getHaNdle. 405
et astS Ato 405
getSUD S ate 406
] P 406
ISCOMPlEtedo e e 407
SeAliZE S alES . . . 408
SetHaNndle e 408
SE L aS S Al e e e e 409
SE SUD S atE . . . e 409
TaKEEVENt . . L e e 410
OMStatiCAITAY Class . . ottt e 411
O S At CAITAY . . . v vttt e e e e 413
~OM S A AT AY . . v vttt e e 413
(o = =1 (o] 1 [414
A . . e e 415
N . L 415
OO AL . L o 416
DTG OUNT. . . oot 416
OBLSIZE . . oo 417
SEMPLY. . .o 417
FEMOVEAIl . . . 418
S AL . L o 418
OMSEIING ClasSS . ottt e 419
OM SHIING . . ottt 420
~OM S NG oo e e 421
L@ 01T = 1 (o] 1 [421
(0] 01T (= 1] 422
0T 0= (0] e 423
L0701 = (0] [424

Rational Rhapsody Xi

Table of Contents

(0] 01T (= 1] 425
0T 0= (0] 426
0T 0= = (0] 427
O aAOr 1= o o 428
[0 1= (0] 429
[0 1= > (0] 0 430
(0] 01T = 10 (S 431
OB A0 > . L L e e 431
O AOr ¥ L o 432
ComMPAarENOCASEo 432
Bty . . e 433
GetBU e . 433
Getlength. . .. 434
S E MDY . . 434
OMDESIIUCHIVESTING2X . . e e e 435
FESE SIZE . .t e e 435
SO AL, . o o e 436
SetDefaultBloCK 436
OMThread Classt e e e e 437
OMTRread 442
~OMTRrEead 444
allowDeletelnThreadsCleanupot 445
CaANCEIEVENT . . . 445
CaANCEIEVENES . . o 446
cleanuUpAIIThreads o e e 447
CcleanupThread 447
destroyThread 448
JOEXECULEt e 448
BXBCUL ittt e 449
OEtAOMTrEad. e e 451
OetEVENIQUEUE . . . e e 451
getGUANdo 451
getOsHaNdIe 452
getOSThreadENdCID 453
0= 8] =T o] 01T 454
LOCK . ot 454
OMGEtEVENIQUEUE. . . . o e e 454
QUEUEBEV BN L . o e e e 455
LSS0 T 456
SChEAT M. . . e e 456
SEtENAOSThreadInDIor e 458
S P oI Y . . o oo e e 459
setToGuardThread. e 459
shouldGuardThread e 460

Xii Frameworks and Operating Systems Reference

Table of Contents

LS 7= U 460
SIOPAIITRreadso e 461
SUSPEN . . o oo e 462
UNIOCK . .« oot e 462
UNSChEdT M. . ..o 463
OMThread Timer Classttt e e e e e e e 465
~OMThread Timer. . . . e 466
ACHION . L e 466
NS ANCE . . . oo e e 467
OMTIMEOUL ClasS . .t ittt e e e e e e e e e e e 469
OMTIMEOUL. . . oot e e e e e e e e e e 472
~OMTIMEBOUL. .« . ottt e e e e e e 473
[0 1= (0] 473
(0] 01T (= 1] 474
(0] 01T (= 1 (S 475
DIt . . oo e 476
getDlaY . . . 477
Qe DUETIME . o o ot 477
OetTIMEOULIdo e 478
ISNOTDEIAYttt e e e 479
DB . o ottt e e e e e e e 479
SE DIAY . . . e 480
SEIDUBTIMIE . o 481
SetRElatiVEDUETIME e 481
SE S AL 482
SEtTIMEOULI. 483
OMTImerManager Class oot e e e e e e e e 484
OMTIMEIMANAGET . . . ottt e et e e e e e 487
~OMTIMEIMANAGETttt et e e e e e e e e e e 489
ACHION . o o e 489
ChKBIIAGE . . . oo 490
ClearinStanCe 490
CONSUME TIME. . oo e e e e e e e e e e e e e e e e e 491
decNonldleThreadCoUNnter. o e e e e e e e e 491
eSOV TIMEL . . . ot e e e e 492
etElaPSEdTimMe . . oo 492
QONEXIANAPOSE . . . oo 493
incNonldleThreadCoUNter e e e e 493
. e 494
NS ANCEo e e e 494
NS AN CE . .o it e 495
FESUMIE . . .ttt it ittt e e e e e e 496
S, i e e 497

Rational Rhapsody Xiii

Table of Contents

SetEIAPSedTime . . . 498
SOftUNSChEdTm ... 499
SUSPEN . . o oo e 499
UNSChEdTm. 500
OMTimerManagerDefaults Class 502
OMUADbstractContainer Classo e e e e e e e 503
~OMUADSIraCtCONIAINETt e e 503
[0 = O U = o | 504
OELFIISt . . L 504
OEtN XL, . oo 505
OMUCOIIection Class s e e 506
OMUCOIIECHION . . . o e 508
~OMUCOIIECHION 508
(o] o =1 =1 o1 1 [509
A . 510
AAOAL . 511
N .o 512
OO AL, . o o 513
OEIC OUNT. . e 513
[0 = O U = o | 514
0 o] L] 514
OIN XL, o oot e e 515
OBLSIZE . o o 515
S E MDY . . . 516
L0V . . . ottt e e e e e e 517
FEMOVEAIL . . o 518
FEMOVEBYINAEX . .. e e 519
FEONQANIZE . . oottt e 520
SB AL . L o e e 521
OMURErator ClasS . .. oot e e e e e e 522
OMUIREIALOro e e e e e e e 523
O O o 523
OB A0 . L o o 524
LSS 524
VaAlUB. . . 525
OMULISt ClaSS . . .t e e e e 526
OMULISE . .t e e 528
~OMULISE . . . 528
(o] o 1= =1 (o) 1 [529
A . . 530
AAOAL .« .o 531
AdARIISt . 532

Xiv Frameworks and Operating Systems Reference

Table of Contents

BN L 533
OO AL . . o o 534
OELCOUNT. . . oo 535
EICUITENT . . . 535
QORI . L o e e e 536
DN XL, . .o 536
SEMPLY. . oo 537
TEMOVEFIISt L L 537
TEIMOVE . . oottt e ettt e e e e e e e e e e 538
FEMOVEAIl . . . e e 539
FEMOVERI St L L e 539
FEMOV I M . . . 540
FEMOVELAST.o 541
OMULISHIEEM Class . . .ottt e e e e e 542
OMULISTEM . . . 542
CONNECET 0. . . oot 543
etElEmMENt . . o 543
DN XL, . .o 543
S E MmNt . . . o 544
OMUMEAD Class . .ottt e e e e e e e e e e e e 545
OMUMD .« . e 546
~OMUMaD . .. 546
(o] o<1 =1 o 1 [547
A0 . .. e 548
L1110 549
OO AL, . o o 549
OLCOUNL. . .t e e 550
Ot BY . oo 550
5] =111 0] 7 551
LOOKUD . e 551
1] 01010 552
FEMOVEAIl . . . 553
FEMOVEK Y . . .t e 553
OMUMaEPItEM ClaSS . . .ottt e 554
OMUMaDI M . . o 554
~OMUMaAPIEM . . . 555
etElEmMeNt . . o 555
OXF ClaSS. « v vttt et e e e 556
animDeregisterForeignThread e 557
animRegisterForeignThread. 558
Jelay. . .o 559
BN . . o 559
getMEemMOrYMaNager 560

Rational Rhapsody XV

Table of Contents

getTheDefaultActiveClass e e e 560
getTheTickTimerFactory e 561
3 562
SEIMEMOIYMaANAGET 564
setTheDefaultActiveClass e e 565
SEtTheTICKTIMEIFaCtOrY. . . . o e e e e e e e e e e 566
L] 1 567
N X . o 569

XVi Frameworks and Operating Systems Reference

Frameworks and Operating Systems

The emergence of the unified modeling language (UML) as an industry standard for modeling
complex systems has encouraged the use of automated tools that facilitate the devel opment process
from analysis through coding. Thisis particularly true of real-time embedded systems whose
behavioral aspects facilitate full life-cycle software devel opment by way of modeling. Statecharts
are natural candidates for automatic code generation, testing, and verification.

Real-Time Frameworks

One major benefit of the object-oriented paradigm is the inherent support for abstraction-centric,
reusable, and adaptable design. In particular, it is common to construct complex systems using
predefined frameworks. A framework is a collection of collaborating classes that provides a set of
services for agiven domain. You cust oni ze the framework to a particular application by
subclassing and composing instances of the framework classes. Therefore, frameworks represent
object-oriented reuse.

There are severa advantages to using frameworks:
+ You do not need to write the application from scratch because it reuses elements of the
framework.

+ Frameworks structure the design of the application by providing a set of predefined
abstractions, given by the classesin the framework. These classes provide architectural
guidance for the system design.

+ Frameworks are open and flexible designs because their classes can be customized via
subclassing.

Rational Rhapsody 1

Frameworks and Operating Systems

Rational Rhapsody Statecharts

Rational Rhapsody supports UML state machines as Rational Rhapsody statecharts. Thisincludes
hierarchical state decomposition (orthogonal or states), parameter-carrying events, time events,
pseudo states (initial, history, join, fork, junction, and choice), completion transitions, entry and
exit actions, and other features. It also includes an asynchronous event-handling model as defined
in the UML—each class that has a statechart is reactive, so it has an associated event manager (an
active class). The event manager queues events as they arrive, and later dispatches them into the
reactive class for processing according to its statechart.

The kinds of events supported in Rational Rhapsody were described in previous sections. As
explained, time events are realized in timeouts (oMTimeout), which are specialized events
(omEvent). Timeouts can be used as transition triggers, written ast nm(n) . This signalsto the event
that n milliseconds have passed since the transition’s source state was entered.

The UML defines run-to-completion semantics for statecharts. It asserts that events are consumed
one by one, where the processing of the next event does not start until the previous one has been
fully consumed. Thus, each event can be viewed as transforming the statechart from one stable
configuration to another. In Rational Rhapsody, the consumption of a given event includes the
(“internal™) injection of all (enabled) completion transitions—the latter do not enter the event
gueue. This complies with the UML requirement that completion transitions be dispatched before
any other queued event.

2 Frameworks and Operating Systems Reference

The Object Execution Framework (OXF)

The Object Execution Framework (OXF)

Rational Rhapsody is avisua programming environment that enables you to create an embedded
software application by creating a graphical, object-oriented model and generating production-
level code from that model.

Code generation in Rational Rhapsody is framework-based: it includes a fixed, predefined
framework called the OXF (Object eXecution Framework), and the generated code reuses that
framework. For example, the code generated for a reactive class reuses the event processing
functionality by subclassing aframework class that embodies event processing capabilities. This
has the following implications:

*

The framework contains a set of useful real-time abstractions that structure the generated
code and give concrete meaning to UML concepts (such as “active class’).

Significant portions of functionality are factored out into the framework classes, so thereis
less need to generate specific code. This also eases the task of understanding the code.

You can customize framework elements using inheritance to fit your specific needs.

The framework has an existence of its own, which isindependent of the code generator. Its
classes can be used outside the code generation process, in user-class implementations, or
in any other way you desire.

Working with the Object Execution Framework

You can work with the OXF at several levels. For example, you can use the OXF to:

*

Create multi-threaded, reactive applications. Thisis the most common way to use the
OXF.

Write actions (generate events, synchronize threads, manipulate relations, and so on). This
does not require deep understanding of the internals; rather, you simply need to call afew
methods.

Implement reactive behaviors without a statechart. If you want to further customize the
automated behavioral code, you need to understand the collaborations within the
framework.

Customize the framework. The framework classes enable you to tailor the framework for
your specific needs.

Rational Rhapsody

Frameworks and Operating Systems

The OXF Library

Rational Rhapsody has one central runtime library, OXF, that provides run-time services required
by the generated code. The other libraries under the Shar e directory of the installation enable the
animation and tracing capabilities of Rational Rhapsody.

Note

For alist of the most relevant filesin the directory
<install _dir>/Share/ LangCpp/ oxf , see Configuring the OXF Properties for the C++
Framework Section.

The compiled OXF consists of three logical packages:

¢ Behavioral package (Behavi or al)—Consists of a set of collaborative classes that form
the fundamental architecture of an object-oriented, reactive, multi-threaded system. For
more information, see Active Behavior Framework.

¢ Operating system package (OSLayer)—Provides athin abstraction layer through which
the framework and generated code access operating system services. For more
information, see Operating System Abstraction Layer (OSAL).

¢ Servicespackage (Ser vi ces)—Consists of two subpackages: Menor yManagenent and
Cont ai ner s. For more information, see Services Package.

4 Frameworks and Operating Systems Reference

Rational Rhapsody Applications and the RTOS

Rational Rhapsody Applications and the RTOS

The deployment environment is the set of tools and third-party software required to develop and
deploy a Rational Rhapsody-generated application in a particular hardware environment. The
major components of the deployment environment are as follows:

¢ Real-time operating system (RTOS)

¢ Compiler

* Makefacility

Rational Rhapsody generates implementation source code, in severa high-level languages, that is
RTOS-independent. Thisis achieved using a set of adapter classes known as the Operating System
abstraction layer (OSAL), which is part of the Rational Rhapsody object execution framework
(OXF). The OXF itself is operating system-independent, except for the OSAL, which serves asthe
only interface to the operating system and is the only operating system-dependent package within
the OXF.

Each target environment requires a special OXF version. Preparing the OXF is primarily the
process of providing an implementation for the OSAL. Each implementation of the OSAL for a
particular target is known as an adapter.

Operating System Abstraction Layer (OSAL)

The OSAL consists of aset of interfaces (abstract classes) that provide all the required operating
system services for the application, including:

¢ Tasking services

¢ Synchronization services

¢ Message queues

¢ Communication port

¢ Timer service

Rational Rhapsody 5

Frameworks and Operating Systems

The OSAL separates the OXF from the underlying RTOS using the layered approach.

Generated Application

QX F (Object eXecution Framework)

-

OS5 Abstraction Layer

RTOS

The OSAL supports each of these services by implementing thin wrappers around real operating
system entities, adding minimal overhead.

These abstract interfaces need an implementation, which is a set of concrete classes that inherit
from the abstract interfaces and provide an implementation for the pure, virtual operations defined
in theinterface. The OSAL enablesyou to encapsulate any RTOS by changing the implementation
of the relevant framework classes (but not their interface) to meet the requirements of the given
RTOS.

Mediation between the concrete classes, which are RTOS-dependent, and the neutral interfacesis
accomplished using an abstract factory class, which returns to the application the concrete class
that implements a particular interface. This singleton class acts as a broker that constructs the
proper adapter class once requested by the application. The OSAL Classes describes the abstract
factory in greater detail.

Most of the adapter classes have direct counterparts in the targeted RTOS and their
implementation is straightforward. However, sometimes a certain operating system does not
provide a certain abject, such as a message queue. In this case, you must implement the object
from primitive constructs.

6 Frameworks and Operating Systems Reference

Rational Rhapsody Applications and the RTOS

Threads

Rational Rhapsody supports multitasking via threads. Also known as lightweight processes,
threads are basic units of CPU utilization. Each thread consists of a program counter, register set,
and stack space. It shares its code section, data section, and operating system resources, such as
open filesand signals, with peer threads. If an RTOS does not support multitasking viathreads, the
operating system adapter written for that environment must provide it.

The factory has two create thread operations that create two different kinds of threads:

¢ creat eOMOSThr ead—Creates asimple thread. Thisis the most common case. Simple
threads are constructed in suspended mode by default. This means that the thread does not
start execution until you call st ar t . Otherwise, it might start execution immediately and
try to access variables or datathat are not yet valid.

¢ creat eOMOSW apper Thr ead—Creates awrapper thread. A wrapper thread is used to
wrap an external thread so it can be treated as one of the application threads on the call
stack. A wrapper thread can be suspended, resumed, have its priority set, and participate
in animation. Wrapper threads are used only for instrumentation. They represent user-
defined threads (threads defined outside the Rational Rhapsody framework).

Stack Size

The stack size is determined by the implementation of the wrapper thread object <env>Thr ead,
derived from the OMOSThr ead interface. Specifically, the stack size is defined in the constructor
body, which is executed upon the thread creation call. For example, in the constructor for a
VxThread object in VXWorks, the stack sizeis set to the default value of

OMOSThr ead: : Def aul t St ackSi ze in VxCS. h, asfollows:

VxThread (void tfunc(void *), void *param,
const char* const name = NULL,
const long stackSize =
OMOSThread: :DefaultStackSize) ;

Def aul t St ackSi ze in OMOSThr ead isset to DEFAULT_STACK (defined as 20000 for VxWorks)
inthe vxGs. cpp file, asfollows:

const long OMOSThread::DefaultStackSize = DEFAULT STACK;

To change the size of the stack for al new threads, change the definition of DEFAULT_STACK in
the <env>GCS. h file. Alternatively, you can change the size of the stack for a particular thread by
passing a different value as the fourth parameter to the thread constructor.

Rational Rhapsody 7

Frameworks and Operating Systems

Synchronization Services

The OSAL provides synchronization services by using event flags for signaling between threads
and by protecting access to shared resources through the use of mutexes and semaphores. A mutex
provides binary mutual exclusion, whereas a semaphore provides access by alimited number of
threads. For more information, see the sections OMOSMutex Class and OMOSSemaphore Class.

Message Queues

A message queue is an interprocess communication (IPC) mechanism that allows independent but
cooperating tasks (that is, active classes) within asingle CPU to communicate with one another.
An active classis considered atask in Rational Rhapsody.

The message queue is a buffer that is used in non-shared memory environments, where tasks
communicate by passing messages to each other rather than by accessing shared variables. Tasks
share acommon buffer pool, with OMOSMes sageQueue implementing the buffer. The message
gueue is an unbounded FIFO queue that is protected from concurrent access by different threads.

Events are asynchronous. When a class sends an event to another class, rather than sending it
directly to the target reactive class, it passes the event to the operating system message queue and
the target classretrieves the event from the head of the message queue when it is ready to process
it. Synchronous events can be passed using triggered operations instead.

Many tasks can write messages into the queue, but only one can read messages from the queue at a
time. The reader waits on the message queue until there is a message to process. Messages can be
of any size.

Processes that want to communi cate with each other must be linked somehow. A communication
link consists of arelation, asin the form of an association line drawn between classesin an object
model diagram. The link can be either unidirectional or bidirectional (symmetric). In the case of a
unidirectional link from class A to class B, class A can send messages to class B, but class B cannot
send messages to class A. With bidirectional links, both classes can send messages to each other.
The message queue is attached to the link, and allows the sender and receiver of the message to
continue on with their own processing activities independently of each other.

In operating systems with memory protection, one active class can call an operation of another
active class, given an association relation between them, if the operating system itself supports
such direct calls. For operating systems with shared memory, Rational Rhapsody knows how to
pass events using the operating system messaging. Whether direct function calls are supported
with memory protection depends on the operating system itself, not the Rational Rhapsody
framework.

8 Frameworks and Operating Systems Reference

Rational Rhapsody Applications and the RTOS

In Rational Rhapsody applications, the BaseNurmber O | nst ances property (under CG : Event)
specifiestheinitial size of the memory pool that is allocated for events. This pool isdynamically
alocated at program initialization. The Addi t i onal Nunber Of | nst ances property (under

CG : Event) specifies the size of any additional memory that should be alocated during run time
if theinitial pool becomes full. Additional memory alocation is done on the heap and includes
rearranging of the initial memory pool.

Communication Port

A communication port provides interprocess communication between Rational Rhapsody and
instrumented applications. Unlike a regular message queue, which is used for communication
between tasks on the same processor, a connection port has some unique identification, generally a
socket address and number, that allows Rational Rhapsody to communicate with processes
running on either the same machine or different machines. This alows Rational Rhapsody to
communicate, for example, with an animated application running on a remote target board.

Rationa Rhapsody requires the TCP/IP protocol to be installed on the host machine. Processes
connect to the animation server via the connection port using the TCF/IP protocol. The port
number isincluded at the start of message packets that are addressed to the animation server.

Thefollowing figure illustrates the interprocess communication.

Instrumentead
R hapsody Generates - Application
Animation Connection
Part Part
A F
TCPIIP

Note the following:

¢ Rationa Rhapsody listens to the port number defined in ther hapsody. i ni file.

¢ Theframework inserts the same port number into the connection port.
The instrumented application can be running on either the same machine as Rational Rhapsody
(the host machine) or on a remote target.

For more information, see OMOSConnectionPort Class and OMOSSocket Class.

Rational Rhapsody 9

Frameworks and Operating Systems

Timer Service

The operating system factory provides two different kinds of timers:
+ Tick timer—Used for real-time modeling. Thetick timer is compiled into the <env>oxf
and <env>oxf i nst libraries.

Thefactory’scr eat eOMOSTi ckTi mer method creates a constant-interval
application timer. The timer calls a callback function at a set interval.

¢ |dletimer—Used for simulated-time modeling.
Both timers are implementations of OMOSTi mer . For more information, see OMOSTimer Class.

10 Frameworks and Operating Systems Reference

Real-time Operating System (RTOS)

The typical embedded software application created in Rational Rhapsody is designed to work with
areal-time operating system (RTOS). Rational Rhapsody includes a number of adapters that cover
the more common RTOSes, as described in Rebuilding the Rational Rhapsody Framework. In
addition, you can customize the Rational Rhapsody installation to accommodate a specific OSY
RTOS targeted for use with the embedded software application. Thisinvolves interfacing with the
osLayer package, defined specifically for this purpose.

The operating system package (osr.ayer) consists of two packages:

¢ AbstractlLayer Package (OSAL)

¢ OSWrappers Package

AbstractLayer Package (OSAL)

The operating system abstractLayer package (OSAL) allows you to develop and test the
application and al gorithmic code of embedded, real-time systemsin the environment that best suits
your needs. You can implement and test the actual concurrent behavior and interactions, including
interleave and stress testing, in an implementation environment. Then, when ready, you can adapt
the code to an embedded target where debug facilities are often extremely limited. The interface
provided by the operating system adapter remains the same.

The OSAL provides athin abstraction layer through which the framework and generated code
access operating system services. Each one represents an operating system object. The behavioral
framework and generated code are RTOS-independent (as are al other parts of the framework).
RTOS independenceis achieved viathe set of adapter classes that comprise the OSAL. The OSAL
isthe only RTOS-dependent package within the OXF, and serves as the only interface to the
RTOS. By “plugging-in” different OSAL implementations, the user application can run on
different operating systems.

In general, each target environment requires a custom implementation of the OSAL. For detailed
information about customizing the OSAL for aspecific RTOS. The os . h specification fileincludes
the interfaces for the OSAL.

Rational Rhapsody 11

Real-time Operating System (RTOS)

Note

Some environments can use the same adapter. For example, although VxWorks" PPC860
and VxWorks Pentium® 111 are different environments, they use the same adapter. The same
is true for Windows NT® and Windows CE®.

Classes

The abstractLayer package defines classes that describe basic operations and entities used by the
operating system, including the following:

¢ omosThread provides basic threading features. It provides two create thread methods so
you can create either a simple thread or awrapper thread.

¢+ omosMessageQueue alowsindependent but cooperating tasks (active classes) within a
single CPU to communicate with each other.

* owmosTimer actsabuilding block for OMTimerManager, which provides basic timing
services for the execution framework.

* omosMutex protects critical sections within athread using binary mutual exclusion.
Mutexes are used to implement protected objects.

¢ oMOSEventFlag Synchronizesthreads. Threads can wait on an event flag by calling wai t .
When some other thread signals the flag, the waiting threads proceed with their execution.

¢ omossemaphore alowsalimited number of threads in one or more processes to access a
resource. The semaphore maintains a count of the number of threads currently accessing
the resource.

¢ omossocket represents the socket through which datais passed between Rational
Rhapsody and an instrumented application.

¢ omosconnectionPort USed for interprocess communication between instrumented
applications and Rational Rhapsody.

¢ omosFactory provides abstract methods to create each type of operating system entity.
Because the created classes are abstract, the factory hidesthe concrete class and returnsits
abstract representation. The factory isimplemented as a static global variable to ensure
that only one instance of a given osrFactory Can exist.

The operating-specific header filesimplement the abstract classes defined by AbstractLayer
package for the target system. See the OSAL Methods for alist of al methods and their definitions.

OSWrappers Package

The oswrappers package holds the concrete implementation of the OSAL for each supported
RTOS.

12 Frameworks and Operating Systems Reference

Adapting Rational Rhapsody for a New RTOS

Adapting Rational Rhapsody for a New RTOS

To adapt Rational Rhapsody for anew RTOS, first follow these installation steps:

1
2.

5.

Launch the Rational Rhapsody installation and select the Development Edition.

Select the devel opment language or languages and the Check for Real Time OS Settings
check box.

Select the new devel opment environment that is the same or as close as possible to the
desired environment to use as starting point.

Click Next and make any necessary path selections or changes on the next two wizard
screens.

Select the Typical installation and complete the installation.

Run-Time Sources

During the Rational Rhapsody installation, the run-time source files for your language (C or C++)
are added to the Rational Rhapsody \ Shar e\ Lang<Language>\ oxf directory. For example, if
you installed the runtime source filesfor C++, the directory \ Shar e\ LangCPP\ oxf contains both
.hand. cpp files.

Adding the New Adapter

After the new environment has been installed, these additional general steps are required to add the
new adapter:

1

Create new makefiles for building the framework libraries for the new environment. See
Creating the Batch File and Makefiles.

Build the framework libraries for the new environment. See Building the Framework
Libraries.

Create a set of code generation properties for the new environment and a batch file that
sets its compiler environment. You may use the properties and batch file for the closest
installed compiler and linker combination as a starting point. See Creating Properties for a
New RTOS

Validate the new adapter. See validating the New Adapter.

Create a new configuration and select the new RTOS asits target environment.

Generate and make code in the new environment.

Rational Rhapsody 13

Real-time Operating System (RTOS)

Creating the Batch File and Makefiles

Each adapter must provide a set of makefiles and a batch file for building the new OXF libraries
(including the OSAL), using its provided cross-compiler. The following table lists the makefile for

each library.

Makefile

Description

Built With

oxf

Run-time libraries

<env>oxf. mak

aom

Instrumentation libraries that support both

tracing and animation

<env>aom nmak

tom

Instrumentation library that supports tracing

<env>t om nmak

ontom

Communication libraries that support

communication between Rational Rhapsody

and an instrumented application

<env>ontom nmak

The compiled framework libraries are linked to the application generated from the Rational
Rhapsody model, which has its own makefile. The application makefile is specified viathe
MakeFi | eCont ent property, which you modify inthesi t e<l ang>. pr p file. See Makefiles for

more details.

1. Create abatch file to set the environment named <env>make. bat , call the makefile, and
save it to $OVROOT\ et c¢. Thisfile can be used to build the framework aswell as a
Rational Rhapsody model (see also Building the C or C++ Framework in One Step).

2. Create the following makefiles and save them to the specified locations.

File

Location

Description

<env>bui | d. mak

$OVROOT\ Lang<| ang>

Calls the other makefiles to build
the Rational Rhapsody framework
libraries (see Sample
<env>build.mak File).

<env>aom mak

$OVROOT\ Lang<l ang>\ aom

Builds the instrumentation libraries:
e <env>aomntrace
« <env>aomani m

<env>oncom mak

$OVROOT\ Lang<| ang>\ ontom

Builds the communication library
for instrumentation
(<env>ontomappl)

<env>oxf. mak

$OVROOT\ Lang<I ang>\ oxf

Builds the OXF libraries:
« <env>oxf
e <env>oxfinst

See OXF Versions for descriptions
of the different OXF libraries.

14

Frameworks and Operating Systems Reference

Creating the Batch File and Makefiles

File Location Description

<env>t om nak $OVROOT\ t om Builds the tracing libraries:
e <env>tontrace

« <env>tontraceR C
(for Rational Rhapsody
Developer for C)

You might also need to copy any RTOS-specific configuration files required to build the libraries

to $OVROOT\ MakeTenpl . For example, pSOSystem™ requiresdr v_conf . ¢ and sys_conf . h.
In addition, you might need to copy ther oot . cpp file. Replace these fileswith any board-specific
versions, if necessary.

Sample <env>build.mak File

The following is an example of thevxbui | d. mak file, which is used to build the framework for
the VxWorks environment.

MAKE=make
CPU=1I80486
ifeq ($(PATH_SEP),)
all :
@echo PATH SEP is not defined. Please define it as \\
or /
else
all

$(MAKE) all -C oxf -f vxoxf.mak CFG=vxoxf CPU=$ (CPU)
PATH_SEP=$(PATH_SEP)
$(MAKE) all -C oxf -f vxoxf.mak CFG=vxoxfsim
CPU=$ (CPU)
PATH_SEP=$(PATH_SEP)
S (MAKE) all -C oxf -f vxoxf.mak CFG=vxoxfinst
CPU=3 (CPU) PATH_SEP=$(PATH_SEP)
S (MAKE) all -C oxf -f vxoxf.mak CFG=vxoxfsiminst
CPU=3 (CPU) PATH_SEP=$(PATH_SEP)
$(MAKE) all -C omcom -f vxomcom.mak CFG=vxomcomapplCPU=$ (CPU)
PATH_SEP=$(PATH_SEP

$(MAKE) all -C tom -f vxtom.mak CFG=vxtomtrace
CPU=S (CPU) PATH_SEP:$(PATH_SEP)

$(MAKE) all -C tom -f vxtom.mak CFG=vxtomtraceRiC
CPU=S$ (CPU) PATH_SEP=$(PATH_SEP)

$(MAKE) all -C aom -f vxaom.mak CFG=vxaomtrace
CPU=$ (CPU) PATH_SEP=$(PATH_SEP)

S (MAKE) all -C aom -f vxaom.mak CFG=vxaomanim
CPU=S$ (CPU) PATH_SEP=$(PATH_SEP)

endif

This makefile:

Rational Rhapsody 15

Real-time Operating System (RTOS)

¢ Setsthe make command for the VxWorks environment (nake).
¢ Setsthe CPU being targeted (I 80486 = Intel 80486).

Checks whether the path separator (PATH_SEP) character was properly set. If not, it
generates an error and cancels the build.

Setstheal | : command to build the framework libraries for the various configurations
(with and without animation, real-time or simulated time, and so on).

Creating New Makefiles

You should use the existing makefile for the environment that most closely resembles the new
RTOS as atemplate. The GNU version of the Solaris makefile (sol 2bui | dGNU. nak) isthe most
neutral makefile because it is based on general GNU make capabilities, as opposed to the more
target-specific makefiles (such as ms oxf . mak), which are specific to a particular environment.

OXF Versions

In the current implementation, the Rational Rhapsody OXF is compiled in the following versions:

¢ OXF—Production, real-time OXF
¢ OXFI NST—Instrumented OXF (for animation)

Animation Libraries

To support instrumentation (animation or tracing), Rational Rhapsody requires other libraries
besides the OXF libraries to be linked to the generated application. These libraries are specific to
the target operating system. The aomand ontomlibraries have corresponding makefiles that are

similar to the OXF.
C++ Libraries
The compiled C++ libraries are located in the $OVROOT\ LangCPP\ | i b directory:

¢ For C++ animation, you need <env>aomani m | i b (for example, vxaomani m | i b) and

<env>omComAppl . |i b.

For C++ trace, you need <env>aont r ace. | i b, <env>onComAppl . | i b, and
<env>tontrace.lib.

The C++ libraries require support for C++ 1/0O streams. For operating systems without |/O streams

(such as Windows CE®), set the _OM_NO_I OSTREAMflag in the makefile used to compile the
libraries to the RHAP_FLAGS command, as follows:

RHAP_FLAGS=-D _OM NO IOSTREAM

16 Frameworks and Operating Systems Reference

Creating the Batch File and Makefiles

Note

Windows CE does not support tracing because it does not have 1/0 streams. Thereisno
tracer library that does not require 1/0 streams.

C Libraries
The compiled C libraries are located in the $OVROOT\ LangQ\ | i b directory:

¢ For C animation, you need <env>aonani m | i b and <OS>onComAppl . | i b.

+ For Ctrace, you need <env>aont r ace. | i b, <env>onComAppl . | i b,
<env>tontraceRi C. |ib,and<env>oxfinst.!lib.

Of theinstrumentation libraries for C, five were written natively in C. However,

<env>t ontraceRi ¢ isaC++ library that islocated in $OMROOT\ LangCpp\ | i b. It provides C
tracing services, although the library itself waswritten in C++. Because thelibrary is precompiled,
you need only link to it. Therefore, the language in which it was written should be of no concern.

Java Libraries

The compiled Javalibraries are supplied asj ar filesin the $OVROOT\ LangJaval\ | i b directory.
For Java animation, you need thefilesani m j ar and ani ncom j ar.

Rational Rhapsody

17

Real-time Operating System (RTOS)

Implementing the Adapter Classes

To implement the adapter classes, you inherit from the OXF classes defined in the os. h fileand
provide an implementation for each of these classes. You must implement the following classes:

¢ OMOSConnecti onPort
¢ OMOSEvent Fl ag
¢ OVOSMessageQueue
¢ OMOSMut ex
¢ OMOSSenaphor e
¢ OMOSSocket
¢ OMOSThread
¢ OMOSTi mer
It is common practice to add the <env> prefix to each implemented class.

For example, you would implement the OMOSMut ex class for VxWorks as follows:

1. The OXF classfor amutex is OMOSMut ex, SO the VxWorks adapter class that inherits
from OMOSMut ex is named Vx Mut ex.

2. Implement each of the interface operations defined for the class. The OMOSMut ex classis
defined in os. h asfollows:

cl ass RP_FRAMEWORK DLL OMOSMut ex {
OM _DECLARE_FRANMEWORK _MEMORY_ALLOCATI ON_OPERATORS
public:
virtual ~OvosMutex(){};
virtual void lock() = 0;
virtual void unlock() = 0;
virtual void* getGsHandl e() const = 0;
#i f ndef OSE_DELTA
/1 backward conpatibility support for non-CSE
/1 applications
void free() {unlock();}
#endi f

i
3. Place the specification of the new adapter classin the VxCS. h:

class VWxMutex: public OMOSMut ex {

private:
SEM I D hMut ex;

public:
voi d |l ock() {senTake(hMitex, WAI T_FOREVER);}
voi d unl ock() {senG ve(hMitex);}

18 Frameworks and Operating Systems Reference

Implementing the Adapter Classes

VxMut ex() {
/1 hMut ex

hMut ex
}

= senBCreat e(SEM Q FI FO, SEM FULL);
semMCr eat e(SEM Q FI FO) ;

~VxMut ex() {senDel ete(hMitex);}

voi d* getHandl e() {return (void *)hMitex;}
virtual void* getGsHandl e() const {return (void*)

hMut ex; }

b

Modifying rawtypes.h

Ther awt ypes. h file contains the basic types supplied by the RTOS to be used by the OXF. If you
are creating a new RTOS, you must add the include file for that environment.

For example, the VxWorks section of ther awt ypes. h fileisasfollows:

// Basic os definitions

#ifdef VxWorks

#include <vxWorks.h>

#endif

Other Operating System-Related Modifications

You might need to modify the set 1nput method of the Tomur class to support tracing in a new
operating system. When creating input streams for the stepper, there might be compilation errorsif
the call to create anew ifstream inthe set Input Method UseS ios: :nocreate. Because

ios: :nocreate iSNot part of the C++ standard, some compilers (such as Green Hills) do not
support it. Currently, the implementation of set | nput inthe tom\tomstep. cpp file hasoptionsto
create i fstreams for UNIX and the STL without using ios: :nocreate. Theimplementationisas

follows:

ifdef unix

// unix : Actually Solaris 2 cannot open for READ if
// the ios::nocreate is placed here

ifstream* file
#else
#ifdef OM USE_STL

ifstream* file
#else

ifstream* file
#endif

new ifstream(filename) ;

new ifstream(filename) ;

new ifstream(filename, ios: :nocreate) ;

In addition, you might need to add another #i f def clauseif the new environment does not
support i os: : nocr eat e. For example, add the following lines of code before the last #el se for

the Green Hills compiler:

Rational Rhapsody

19

Real-time Operating System (RTOS)

#else
#ifdef green
ifstream* file = new ifstream(filename) ;

Building the Framework Libraries

Thefollowing sections describe how to rebuild the framework libraries, according to language and
platform. The topics are as follows:

¢ Building the C or C++ Framework for Windows Systems

¢ Building the Ada Framework

¢ Building the Java Framework

¢ Building the Framework for Solaris Systems

Note

Some environments require you to set additional macros in the invocation command.
Typicaly, there are also optiona switches to control compilation.

Building the C or C++ Framework for Windows Systems

You can build the framework libraries for C or C++ on Windows systems in either one or two
steps.

Building the C or C++ Framework in Two Steps
To build the framework, follow these steps:

1. If necessary, set any environment variables required by the target
cross-compiler. For example, running $OMROOT\ et c\ vcvar s32. bat setsthe

environment for the Microsoft® compiler.

Note: The<env>bui | d. mak makefile builds all run-time libraries and saves them to
the $OVROOT\ | i b directory.

2. Changedirectory to the $OVROOT\ Lang<!| ang> directory and issue the appropriate make
command for the target environment with the <env>bui | d. mak file as an argument. For
example:

> make -f vxbuild.mak PATH SEP=<path separators>

Note that the path separator for VxWorks can defined as either \\ or/ .

20 Frameworks and Operating Systems Reference

Building the Framework Libraries

Building the C or C++ Framework in One Step

You can combine the two steps into one by using the <env>nake. bat file with

<env>bui | d. mak asitsargument. The batch file sets the environment before invoking the
makefile. For example, thefollowing isthe nsmake. bat file used to set the environment and then
build files for the Microsoft environment:

@echo off

if "$2"=="" get target=all

if "$2"=="build" set target=all

if "$2"=="rebuild" set target=clean all
if "$2"=="clean" set target=clean

call "D:\Rhapsody\Share\etc\Vcvars32.bat" x86

echo "~ “nmake.exe

nmake /nologo /I /S /F %1 %target%
The<l ang>_CG : <Envi r onnent > nvokeMake property usesthe <env>nake. bat batch file
to build a Rational Rhapsody model for a specific target environment. You can use the same batch
file to build the framework libraries for that environment. Thus, the command to build the C or
C++ framework libraries (from the $OVROOT\ Lang<| ang> directory) for most environments
becomes:

> ..\etc\<envsmake.bat <envsbuild.mak

Thisisthe preferred method for building the framework libraries for all environments and
operating systems except Solaris (see Building the Framework for Solaris Systems) and the JDK.

Building the Ada Framework

To use animation with Rational Rhapsody Developer for Ada, you must have version 3.13p of the
GNAT compiler. Otherwise, you must recompile the framework.

To recompile the framework, follow these steps:

1. Instal the Rational Rhapsody Developer for C framework source code. The Rational
Rhapsody Developer for C framework is used to enable Rational Rhapsody Developer for
Adaanimation.

2. Build the Adabehaviord libraries as follows:
a. Openthe model <Rhapsody>\ Shar e\ LangAda83\ nodel \ Ri ASer vi ces. rpy.
b. Generate and build the code.

c. Build the animation C libraries using the makefile included in the directory
<Rhapsody>\ Shar e\ LangC. For example:

make -f AdaWinbuild.mak GNAT HOME=e:/gnat/*

Rational Rhapsody 21

Real-time Operating System (RTOS)

Note

In GNAT 3.15p, the directory layout was modified. If you are using 3.15p and higher,
update the C makefiles by replacing the string "m ngw32" with the string
" GNAT_W N32_LI BS=pent i um m ngw32nsv" to the makefile invocation command.

If you have several compilersinstalled on your machine, make sure that you invoke the make
utility supplied by GNAT (verify that the GNAT\ bi n directory is added to your path before any
other compiler).

Note

To compile the C framework with GNAT, you must install the Windows API support
package as well as the Ada common package.

Building the Java Framework

Rational Rhapsody Developer for Java® provides a real-time framework for Java' in the form of
a Rational Rhapsody model (oxf . r py) under the $OVROOT\ LangJava\ nodel \ oxf directory.
The best way to build the Java framework is to open this model and build it in Rational Rhapsody
(by selecting Code > Generate/M ake).

You can also build the Java framework outside of Rational Rhapsody. However, you must first
generate code for the oxf . r py model inside of Rational Rhapsody to create the OXFLi b. bat file
(using Code > Generate > Nonl nstrumented). Build the Java framework using the following

steps:
1. Openacommand prompt window.
2. Change directory to the OVROOT\ LangJaval\ sr c directory.

3. Run OXFLi b. bat .

Building the Framework for Solaris Systems

Because there is no cross-compiler that can build Solaris code on the PC, the framework libraries
that are linked into Solaris applications must be built on Solaris. In addition to the framework
source files, you need a script that removes carriage returns from framework source files to be
built on Solaris. These are provided in the Solarislibrary t ar file, which isinstalled when you
select the Solaris 2.x Libraries option during the Rational Rhapsody installation.

To build the framework, follow these steps:
1. Wheninstalling Rational Rhapsody on the PC, select the Solaris 2.x Libraries option.

Thisinstallsthesol 2shr . t ar file, which contains the files needed to build the
framework for Solaris.

22 Frameworks and Operating Systems Reference

Building the Framework Libraries

10.

11.
12.

On the Solaris machine, create ar hapsody directory. For example:

$ mkdir /usr/rhapsody
Copy thesol 2shr. t ar filefrom the PC to ther hapsody directory on the Solaris
machine.

On the Solarismachine, unzip thesol 2shr . t ar fileinther hapsody directory using the
following command:

$ tar xvf sol2shr.tar

This creates a Shar e directory under r hapsody and extracts the framework source
filesto the appropriate subdirectories. It also extracts the GNU nake executable and
ther enoveCR. sh script to the Shar e/ et ¢ directory. The script removes carriage
returns from UNIX files.

On the Solaris machine, set the OVROOT environment variable to point to the new Shar e
directory. For example, if you created the Shar e directory as
[usr/r hapsody/ Shar e, use the following command to set OVROOT:

$ setenv OMROOT /usr/rhapsody/Share
Ensure that the path to the compiler is set in the PATH variable.
Change directory to $OMROOT/ Lang<I ang>.

Run ther enoveCR. sh script to remove carriage returns from the sol 2bui | d. mak and
sol 2bui | dGNU. mak files using the following command:

$../etc/removeCR.sh sol2build*.mak

Change directory to $OVROOT/ Lang<I ang>/ aomand run ther emoveCR. sh script to
remove carriage returns from all the makefiles and source files in the directory using the
following command:

$../../etc/removeCR.sh *.mak *.h *.cpp

Repeat go to step 9 for each of the ontom oxf , and t omsubdirectories of $OVROOT/
Lang<!| ang>.

Change directory to $OVROOT/ Lang<I ang>.

If you are using the Forte compiler, build the framework libraries using the following
command:

$../etc/make -f sol2build.mak

If you are using the GNU compiler, use the following command:

$../etc/make -f so0l2buildGNU.mak

Rational Rhapsody 23

Real-time Operating System (RTOS)

Creating Properties for a New RTOS

To complete the addition of a new environment, identify the following information about the
development toolsit uses for Rational Rhapsody:

¢ Compiler

¢ Linker

* Make utility
¢ Libraries

To accomplish this, customize all of the language-specific code generation properties for the new
environment by creating si t e<l ang>. pr p filesin the SOVROOT\ Pr oper ti es directory for
each language you intend to support in the new environment. The language-independent

si te. prp fileisrequired for any build; any language-specific si t e<l ang>. pr p files are used
only if they are present.

Modifying the site<lang>.prp Files

The search path in Rational Rhapsody for site propertiesis as follows:

site<langs>.prp -> site.prp ->

Asyou move from left to right in this search path, properties defined in the files on the left
override the same properties defined in files on the right.

Note
Do not modify any of the original f act ory. pr p or language-specific

f act ory<l ang>. pr p files. Otherwise, you will not be able to return to the factory
defaults. See Implementing the Abstract Factory.

To add the new environment as a possible selection for a configuration, follow these steps:

1. Openthesite<l ang>. prp propertiesfile for each language that the new environment
supports.

2. Fromtheexistingsite. prp file, create language-specific si t e<l ang>. pr p filesfor
each language that the new environment supports. For example, if the environment
supports Java, savethefileassi t eJava. prp.

3. Inthenew sit e<l ang>. pr p file, insert the following line above the line that contains
the end keyword:

Subj ect <l ang> CG

24 Frameworks and Operating Systems Reference

Creating Properties for a New RTOS

10.
11.

Replace <l ang> with CPP for C++, Cfor C, or JAVA for Java (case sensitive).
Repeat for each language.

Inthe new si t e<l ang>. pr p file, add the following lines between the Subj ect
<l ang>_CGand end lines, with thisindentation:

Met acl ass Confi guration
end

Fromthenew . prp file, copy the Property Envi r onnment linefrom the Met acl ass
Conf i gur at i on and paste it into the corresponding location in the new
si t e<l ang>. prp file.

Add the new environment to the end of the enumerated values in the Envi r onnment
property. For example, changetheline Property Envi ronment Enum
"M crosoft, Vxworks,..." tothefollowing:

Property Environment Enum "M crosoft, Vxworks, ..., <env>0S"

If the new operating system will be the default environment for the respective language,
replace the last string in the Envi r onnment line with the name of the new environment.
For example, changetheline Property Environnent Enum

"M crosoft, VxWorks, ..., env0S" "M crosoft" tothefollowing:

Property Environnment Enum "M crosoft, VxWorks, ...,
<env>(0s"' "<env>(0S"

For example, if you are creating C++ code generation properties, your
si t eC++. pr p filewould now look like this:

Subj ect CPP_CG
Met acl ass Confi guration
Property Environnment Enum "M crosoft, VxWbr ks,
Sol ari s2, Borland, MsStandardLi brary, PsosPPC,
M crosof t W nCE, GseSf k, <env>0S" " <env>08"
end
end

Inthef act or y<l ang>. pr p file, find the metaclass for the environment that most
closely resembles the new target environment.

Copy the entire metaclass, including its closing end line, into the new si t e<l ang>. prp
file, between the closing end statement for the Conf i gur at i on metaclass and that for
the <I ang>_CG subject.

Savethe new si t e<l ang>. pr p file.

Repeat the process for each language.

Rational Rhapsody 25

Real-time Operating System (RTOS)

12. Inthenew si t e<l ang>. pr p file, rename the copied metaclass to the name of the new
operating system:

Met acl ass <env>0S
Property | nvokeExecutable String ...
end

13. Modify thel nvokeMake property (under <l ang>_CG : <Envi r onnent >) to use the
correct <env>make. bat batch file for the new environment.

14. Modify each of the code generation properties, especialy MakeFi | eCont ent and its
related properties (described in Makefiles) as appropriate for the new environment,
replacing any occurrences of the operating system-specific prefix with the corresponding
prefix for the new operating system.

Note: The most important properties for anew environment are those that interact
with the makefile.

15. Savethesit e<l ang>. pr p file. Repeat for each language.
16. Restart Rational Rhapsody to load the new si t e<l ang>. pr p files.

Setting the Environment

You can set the new environment as the default or you can select it from the list of available
environments for a configuration in the Rational Rhapsody browser.

In the browser, you can set the Envi r onment property asfollows:

¢ For aproject—All new components (and their configurations) will use the environment
by default.

¢ For a component—All new configurations within the component will use the
environment by default.

¢ For aparticular configuration—Only that configuration will use the environment by
default.

To set the Envi r onment property, follow these steps:
1. Decide the scope of the setting:

a. To set the environment for the entire project, select
File> Project Properties.

b. To set the environment for acomponent or a configuration, right-click the component
or configuration, then select Properties from the popup-menu.

2. Inthe Features dialog box, under the <l ang>_CG subj ect , select the Conf i gur ati on
metaclass.

26 Frameworks and Operating Systems Reference

Creating Properties for a New RTOS

3. SdecttheEnvi ronment property and changeit to the name of the new environment. For

example, <env>Cs.

Configuring the OXF Properties for the C++ Framework

To configure the OXF properties for your C++ framework, use either of these methods:

*

*

Open your C++ project and select File > Project Properties. In the Features dialog box,
filter the properties for those containing “OXF" and make the appropriate changesin the
CPP_CG:Framework category.

You may directly edit specific framework filesin the OXF directory using the table below.

The Rational Rhapsody Developer for C++ framework files are located in the directory

<install dir>/LangCpp/oxf.

Important OXF Files

File Description

AMeMAl oc. h Contains declarations for the abstract interface for static memory
allocation

event. h Contains declarations for the OVEvent ,
OVBt ar t Behavi or Event , and OMIi neout classes

event. cpp Contains the implementation of the OVEvent ,
OVBt ar t Behavi or Event , and OMIi neout classes

MemAl | oc. h Contains declarations for static memory allocation

omabscon. h

Contains declarations of the abstract container classes
(OMAbst r act Cont ai ner and OM t er at or)

ontol | ec. h Contains the declaration of the OMCol | ect i on class, which is
an unordered, unbounded container based on a dynamic version
of OVBt at i cArray

oncon. h Contains common declarations for the basic OMCont ai ner
library

omheap. h Contains the declaration of the OvHeap class

om otypes. h

Contains the generic stream types mapped to either the vendor
streams or standard library streams, based on the OM_STL
compilation flag

omist.h

Contains the declaration of the OWLi st class

omap. h

Contains the declaration of the OMVap class

omenor ymanager . h

Contains declarations for the classes that support the new
memory management functionality introduced in Version 3.0.1

Rational Rhapsody

27

Real-time Operating System (RTOS)

Important OXF Files

File

Description

onmenor ymanager . cpp

Contains the implementation of the memory management
functionality

onmout put. h

Contains reporting messages for OWNot i f yToEr r or and
OWNot i f yToQut put

onout put . cpp

Contains reporting messages for OMNot i f yToEr r or and
OWNot i f yToQut put

onprot ected. h

Contains declarations for the OVPr ot ect ed and OMGuar d
classes, and the guard macros

omgueue. h

Contains the declaration of the OMQueue class, which is an
unordered, bounded, or unbounded queue

onreactive. h

Contains declarations for the OVReact i ve class and the GEN
macros

onr eactive. cpp

Contains the implementation of the OVReact i ve class

omst ack. h Defines a stack template
omstatic.h Contains the declaration of the OVSt at i cAr r ay class
omstring. h Contains definitions of the string types

onmstring. cpp

Contains the implementation of the string types

ont hread. h

Contains declarations for the OMThr ead, OWMMRiI nThr ead,
and OVDel ay classes

omt hr ead. cpp

Contains the implementation of the OMThr ead,
OWAi nThr ead, and OVDel ay classes

omypes. h Contains declarations for the basic types
os. h Contains declarations for the operating system package
oxf.h Contains declarations for the Behavi or al package,
OXF: :init,andisReal Ti nreMbdel
oxf.cpp Contains the implementation of the execution framework layer,
OXF::init,and OXF: :start
rawt ypes. h Contains declarations of the basic types
state.h Contains declarations for abstract state behaviors
state.cpp Contains the implementation of state behaviors
tinmer.h Contains declarations for the OMTi ner Manager ,

OMThr eadTi ner, and OMTi mer Manager Def aul t s classes

Frameworks and Operating Systems Reference

Creating Properties for a New RTOS

Important OXF Files

File Description

timer.cpp Contains the implementation of the OMTi mer Manager ,
OMThr eadTi ner, and OMTi mer Manager Def aul t s classes

<x>0s. h Contains declarations for the concrete operating system (for
example, nt os. h, PsosCS. h, VxCS. h, andlinuxos. h)

<X>0S. cpp Contains the implementation of the concrete operating system
(for example, nt 0s. cpp, PsosCS. cpp, VxCS. cpp, and
| i nuxos. cpp)

<x>oxf . mak Contains the make files for the concrete operating system (for
example, bc5oxf . mak, |inuxoxf. mak, msceoxf. nak,
and nsoxf . mak)

Rational Rhapsody 29

Real-time Operating System (RTOS)

Validating the New Adapter

To test the new adapter, follow these steps:

1

Try building asimple “Hello World” using Rational Rhapsody and your new adapter. In
Rational Rhapsody, create a class that prints the string “Hello World” when the classis
instantiated. When you generate code, be sure to select your new environment in the
configuration settings.

Try building the application. Thiswill immediately find problemsin your adapter, because
building the application requires the use of the generated makefile. To see the generated
makefile, right-click on the configuration in Rational Rhapsody and select Edit M akefile.
At this point, you might need to adjust the propertiesto get the correct generated makefile
for your application.

When you have successfully built the Hello World application, make your application
more complex by adding more classes, putting in include paths, and specifying some
librariesto link in. This continues to test the properties you defined in Creating Properties

for a New RTOS.

You must test the framework part of the adapter (see Modifying the Framework) by running
the Hello World example. If it does not run correctly, you might not have implemented the
framework classes correctly.

For example, Rational Rhapsody creates amain thread for al applications. Check to make
sure that this thread was created correctly for your particular environment.

Note: Notethat for this step, it is best to use your native compiler.

When the Hello World application runs successfully, make your application more
complex. For example:

a. Create some active objects.

b. Create statecharts for some objects.

c. Usetimeoutsin the statecharts.

d. Send messages and events between objects and active objects.
e. Use protection by guarding operations and attributes.

f. Change the instrumentation to tracing.

g. Change the instrumentation to animation.

By implementing an application that tests for this functionality, you validatea major portion of the
adapter. To complete the validation, request a copy of the RTOS Adapter Test Suite from IBM

30

Frameworks and Operating Systems Reference

Modifying the Framework

Rationa Rhapsody Support. Thistest suite consists of several models that cover most of the
scenarios needed to test an RTOS adapter.

Modifying the Framework

The adapter interfaces and the abstract factory interface are declared in the following header files:

+ oxf. h—Object execution framework (OXF) classes
¢ o0s. h—Abstract operating system classes
+ rawt ypes. h—Datatypes used by the OXF

These header files are located in the $OVROOT\ Lang<| ang>\ oxf subdirectory of the Rational

Rhapsody installation. In this path, $OVMROOT is an environment variable that points to the
Rhapsody\ Shar e directory.

Implementing the Abstract Factory

Each RTOS adapter consists of a concrete operating system factory, which implements the abstract
operating system factory. To create the concrete factory for a new target, follow these steps:

1. Create aspecification file and an implementation file, each prefixed by the operating
system (environment) name using the convention <env>0S, where <env> isan
abbreviation for the environment name. For example, the adapter source files for
VxWorks are named VxCS. h and VxGS. cpp. The concrete factory for the VxWorks
environment is implemented in these files.

Note: You should use an existing implementation as a starting point for the adapter.
For example, if VxWorksis the closest existing environment to the new target,
copy and rename the VxOS. h and VxCS. cpp filesto use as atemplate. Make
sure that al the adapter implementation classesin thesefiles are prefixed ina

consistent manner. For example, the concrete factory for VxWorksis named
VxCOSFact ory.

2. Rename all environment-specific prefixesin the copied files from the old to the new
environment name. Note that using the operating system as a prefix for operating system

wrapper classes is a Rational Rhapsody convention; you can create your own naming
scheme.

Plugging in the Factory

The factory mediates between the application and the concrete, operating system-dependent
adapter classes.

To plug in the concrete factory, you must create aspecific <env>0SFact or y that inheritsfrom the
OMOSFact ory inthe OXF. Thisclassisdeclared inthe <env>0S. h file.

Rational Rhapsody 31

Real-time Operating System (RTOS)

For example, in the VxC8S. h file, the Vx OSFact or y classinherits from the OMOSFact ory in the
OXF, asfollows:

[1177777777777777777777777777777777777777
class VxOSFactory : public OMOSFactory {

// OSFactory hides the RTOS mechanisms for tasking and
// synchronization

Defining the Virtual Operations

Within the <env>0SFact or y class declaration, you must define a set of virtual operations that
will create the operating system services needed by the application. These servicesinclude tasking,
synchronization, connection ports, message queues, and timing services.

Inthe VxCS. h file, the declaration of virtual operationsis asfollows:

public:
virtual OMOSMessageQueue *createOMOSMessageQueue (
OMBoolean /* shouldGrow */ = TRUE,
const long messageQueueSize =
OMOSThread: :DefaultMessageQueueSize)
{ return (OMOSMessageQueue*)new
Vx0OSMessageQueue (messageQueueSize) ; }
virtual OMOSConnectionPort *createOMOSConnectionPort ()

#ifdef _OMINSTRUMENT

return (OMOSConnectionPort*)new VxConnectionPort () ;
#telse

return NULL;
#endif

virtual OMOSEventFlag* createOMOSEventFlag() {
return (OMOSEventFlag *)new VxOSEventFlag(); }
virtual OMOSThread *createOMOSThread (void tfunc (
void*), void *param,
const char* const threadName = NULL,
const long stackSize=0MOSThread::DefaultStackSize)
{return (OMOSThread+*)new VxThread (tfunc, param,
threadName, stackSize);};
virtual OMOSThread* createOMOSWrapperThread (
void* osHandle) {
if (NULL == osHandle)
osHandle = getCurrentThreadHandle () ;
return (OMOSThread*)new VxThread (osHandle) ;

virtual OMOSMutex *createOMOSMutex () {return
(OMOSMutex*)new VxMutex () ;}
virtual OMOSTimer *createOMOSTickTimer (timeUnit tim,
void cbkfunc(void*), void *param) {
return (OMOSTimer*)new VxTimer (tim, cbkfunc,
param) ; // TickTimer for real time

virtual OMOSTimer *createOMOSIdleTimer (
void cbkfunc (void*), void *param)
return (OMOSTimer*)new VxTimer (cbkfunc, param);
/ Idle timer for simulated time

virtual OMOSSemaphore* createOMOSSemaphore (

32 Frameworks and Operating Systems Reference

Modifying the Framework

unsigned long semFlags = O,
unsigned long initialCount = 1,
unsigned long /* maxCount */ = 1,
const char * const /* name */ = NULL)

return (OMOSSemaphore*) new VxSemaphore (
semFlags, initialCount) ;

}

virtual void* getCurrentThreadHandle () ;
virtual void delayCurrentThread (timeUnit ms) ;
virtual OMBoolean waitOnThread (void* osHandle,
} timeUnit ms) {return FALSE;

Vi

The instance Function

To finish plugging in the concrete factory, you must create thei nst ance function, defined in
<env>Q0S. cpp, which returns a pointer to the concrete operating system factory. The instance
method creates a single instance of the OMOSFact or y. It is defined as follows:

static OMOSFactory* instance() ;

For example, in VxWorks, the declaration is as follows:

OMOSFactory* OMOSFactory::instance ()

static VxOSFactory theFactory;
return &theFactory;

}

Rational Rhapsody 33

Real-time Operating System (RTOS)

OSAL Methods

The following table briefly describes each OSAL method. For ease of use, the methods are listed
in alphabetical order.

OSAL Method

Description

~OMOSConnectionPort

Destroys the OMOSConnect i onPort object.

~OMOSEventFlag

Destroys the OMOSEvent Fl ag object.

~OMOSMessageQueue Destroys the OMOSMessageQueue object.

~OMOSMutex Destroys the OMOSMuUt ex object.

~OMOSSemaphore Destroys the OMOSSenmaphor e object.

~OMOSSocket Destroys the OMOSSocket object.

~OMOSThread Destroys the OMOSThr ead object.

~OMOSTimer Destroys the OMOSTi mer object.

~OMTMMessageQueue Destroys the OMTMVessageQueue object.

cleanup Cleans up the memory after an object is deleted.

Close Closes the socket.

Connect Connects a process to the instrumentation server at a
given socket address and port.

create Creates a new object.

Create Creates a new socket.

createOMOSConnectionPort

Creates a connection port.

createOMOSEventFlag

Creates an event flag.

createOMOSIdleTimer

Creates an idle timer.

createOMOSMessageQueue

Creates a message queue.

createOMOSMutex Creates a mutex.
createOMOSSemaphore Creates a semaphore.
createOMOSThread Creates a thread.

createOMOSTickTimer

Creates a tick timer.

createOMOSWrapperThread

Creates a wrapper thread.

createSocket

Creates a new socket.

delayCurrentThread

Delays the current thread for the specified length of
time.

destroy Destroys the object.

endApplication Ends a running application.

endMyTask Terminates the current task.

endOtherTask Terminates a task other than the current task.
endProlog Ends the prolog.

Frameworks and Operating Systems Reference

OSAL Methods

OSAL Method

Description

exeOnMyTask

Determines whether the method was invoked from the
same operating system task as the one on which the
object is running.

exeOnMyThread

Determines whether the method was invoked from the
same operating system thread as the one on which the
object is running.

free Releases the lock, possibly causing the underlying
operating system to reschedule threads.
get Retrieves the message at the beginning of the queue.

getCurrentTaskHandle

Returns the native operating system handle to the task.

getCurrentThreadHandle

Returns the native operating system handle to the
thread.

getMessagelist

Retrieves the list of messages.

getOSHandle

Retrieves the task’s operating system ID.

getOsHandle

Retrieves the thread’s operating system ID.

getOsQueue

Retrieves the event queue.

etTaskEndClbk

Is a callback function that ends the current operating
system task.

getThreadEndClbk

Is a callback function that ends the current operating
system thread.

init

Initializes the new object.

initEpilog Executes operating system-specific actions to be taken
at the end of OXF: : i ni t after the environment has
been set (that is, the main thread and the timer have
been started) and before it returns.

instance Creates a single instance of OMOSFact ory.

isEmpty Determines whether the message queue is empty.

isFull Determines whether the queue is full.

lock Determines whether the mutex is free and reacts

accordingly.

OMEventQueue

Constructs an OVEvent Queue object.

OMTMMessageQueue

Constructs an OMTMMVessageQueue object.

Blocks the thread making the call until there is a
message in the queue.

pend
put

Adds a message to the end of the message queue.

receive Waits on the socket to receive the data.
Receive Receives data through the socket.
reset Forces the event flag into a known state.
resume Resumes a suspended thread.

RiCOSEndApplication

Ends a running application.

Rational Rhapsody

35

Real-time Operating System (RTOS)

OSAL Method

Description

RiCOSOXFInitEpilog

Initializes the epilog.

send

Sends data from the socket.

Send

Sends data out from the connection port.
or
Sends data out from the socket.

SetDispatcher

Sets the dispatcher function, which is called whenever
there is an input on the connection port (input from the
socket).

setEndOSTaskInCleanup

Determines whether destruction of the Ri COSTask
class should kill the operating system task associated
with the class.

setEndOSThreadInDtor

Determines whether destruction of the OMOSThr ead
class should kill the operating system thread associated
with the class.

setOwnerProcess Sets the thread that owns the message queue.

setPriority Sets the operating system priority of the task or thread.

signal Releases a blocked thread.

start Starts the task or thread processing.

suspend Suspends the task or thread.

unlock Releases the lock, possibly causing the underlying
operating system to reschedule threads.

wait Blocks the thread making the call until some other
thread releases it by calling signal on the same event
flag instance.

waitOnThread Waits for a thread to terminate.

See The OSAL Classes for detailed information.

36

Frameworks and Operating Systems Reference

The OSAL Classes

The operating system adapter is an implementation of an abstract factory pattern. For example, in
Rational Rhapsody Developer for C++, the abstract operating system interface consists of the
OMOSFact or y class, whose abstract products are classes that represent operating services such as
OMOSThr ead, OMOSMut ex, and so on. Each target operating system has its own concrete factory
and concrete products that are similarly named, but with the OMOS prefix replaced with an
operating system-dependent prefix. For example, the prefix for VxWorksis VxGS, the prefix for
pSOSystem is PsosCS, and so on.

The abstract operating system interfaces are defined in Ri COSW ap. h (under

$OVROOT\ LangC\ oxf) and * os. h (under SOVROCT\ LangCpp\ oxf). Code that uses an
operating system adapter directly should include the appropriate file for the class definitions and
link with the compiled <env>oxf library or avariant of it.

The operating system interface provides abstract methods to create each type of operating system
entity. Because the created classes are abstract, the interface hides the concrete class and returnsits
abstract representation.

This section contains reference pages for the classes and methods that comprise the abstract
interface. For ease-of-use, the classes are presented in al phabetical order under each programming
language for C and C++.

Rational Rhapsody 37

The OSAL Classes

Rational Rhapsody Developer for C

Thesinglefile R COSW ap. h defines the abstract classes and methods used for multiple
environment definitions (Ri COSNT. ¢, Ri CvxWor ks. ¢, and so on). Each adapter defines the
specific data (for example, st ruct) initsown .h file (Ri COSNT. h, Ri CvxWor ks. h, and so on).

The C methods described in this section include the corresponding VxWorks implementations
(defined in thefile Ri COSVxWor ks. ¢) . Note that the VxWorks-specific methods are not included
in this section; see the appropriate files for details.

The C classes for the abstract interface are as follows:

¢ RiCOSConnectionPort Class

¢ RiCOSEventFlag Interface

¢ RiCOSMessageQueue Class
¢ RiCOSMutex Class

¢ RiCOSOXF Class

¢ RiCOSSemaphore Class
¢ RIiICOSSocket Class

¢ RICOSTask Class
¢ RiCOSTimer

¢ RiCHandleCloser Class

38

Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

RiCOSConnectionPort Class

TheRi COSConnect i onPort classisused for interprocess communication between instrumented

applications and Rational Rhapsody.

Creation Summary

create Creates an Ri COSConnect i onPort
object

destroy Destroys the Ri COSConnect i onPort
object

cleanup Cleans up after an
Ri COSConnect i onPort object

init Initializes an Ri COSConnect i onPort
object

Method Summary

Connect Connects a process to the instrumentation
server at the specified socket address and
port

Send Sends data out from the connection port

SetDispatcher

Sets the connection dispatcher function,
which is called whenever there is an input
on the connection port (input from the
socket)

create

Description

The create method creates an Ri COSConnect i onPort object.

Signature

RiCOSConnectionPort *RiCOSConnectionPort create() ;

Returns
The newly created connection port

Example

RiCOSConnectionPort * RiCOSConnectionPort create()

RiCOSConnectionPort * me =

malloc (sizeof (RiCOSConnectionPort)) ;
RiCOSConnectionPort init (me) ;

return me;

Rational Rhapsody

The OSAL Classes

destroy
The destroy method destroys the connection port.

Signature

void RiCOSConnectionPort destroy (
RiCOSConnectionPort * const me) ;

Parameters

me

The Ri COSConnecti onPort object to delete
Example

void RiCOSConnectionPort destroy (
RiCOSConnectionPort * const me)

if (me == NULL) return;
RiCOSConnectionPort cleanup (me) ;
free (me) ;
cleanup
Description

The cleanup method cleans up after an Ri COSConnect i onPort object is destroyed.

Signature

void RiCOSConnectionPort cleanup (
RiCOSConnectionPort * const me) ;

Parameters

me

The object to clean up after
Example

void RiCOSConnectionPort cleanup (
RiCOSConnectionPort * const me)

if (me==NULL) return;
RiCOSSocket cleanup (&me->m_Socket) ;

/* Assumes you will have only one connection port
so the data for m Buf can be freed; if it is not
the case, the readFromSockLoop will allocate it. */

if (me->m Buf) {
free (me->m_Buf) ;
}

40 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

me->m BufSize = 0;

init
The init method initializes the connection port.
Signature

RiCBoolean RiCOSConnectionPort init (
RiCOSConnectionPort * const me) ;

Parameters

me

The Ri COSConnect i onPort object
Returns
The method returns Ri CTRUE if successful.

Example

RiCBoolean RiCOSConnectionPort init(
RiCOSConnectionPort * const me)

RiCBoolean b;
if (me==NULL) return RiCFALSE;

me->m_Buf = NULL;
b = RiCOSMutex init (&me->m_SendMutex) ;

b &= RiCOSEventFlag init (&me->m_ AckEventFlag) ;

me->m BufSize = 0;

me->m_Connected = 0;

me->m_dispatchfunc = NULL;
me->m_ConnectionThread = NULL;

me->m ShouldWaitForAck = 1;

me->m NumberOfMessagesBetweenAck = 0;
RiCOSEventFlag reset (&me->m_AckEventFlag) ;
return b;

Rational Rhapsody

41

The OSAL Classes

Connect
The Connect method connects a process to the instrumentation server at the specified socket
address and port.
Signature

int RiCOSConnectionPort Connect (
RiCOSConnectionPort *const me,
const char* const SocketAddress,
unsigned int nSocketPort) ;

Parameters

me

The Ri COSConnecti onPort object.

SocketAddress

The socket address. The default valueis NULL.

nSocketPort

The port number of the socket. The default valueis 0.

Returns
The connection status. The possible values are as follows:

¢ 1—Success
¢ O0—Failure

Example

RiCOSResult RiCOSConnectionPort Connect (
RiCOSConnectionPort * const me,
const char* const SocketAddress,
unsigned int nSocketPort)

if (me==NULL) return O0;

if (NULL == me->m dispatchfunc) {
fprintf (stderr, "RiCOSConnectionPort SetDispatcher
should be called before
RiCOSConnectionPort Connect () \n") ;
return 0;

if (0 == me->m Connected) {
(void) RiCOSSocket init (&me->m_Socket) ;
me->m_Connected = RiCOSSocket createSocket (
&me->m_Socket, SocketAddress,nSocketPort) ;

if (0 == me->m_Connected)
return O0;

42 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

/* Connection established invoking thread to
receive messages from the socket */

me->m_ConnectionThread = RiCOSTask create ((

void (*) (void *))readFromSockLoop,

(void *)me, "tRhpSock",RiCOSDefaultStackSize) ;
RiCOSTask start (me->m ConnectionThread) ;
return me->m_Connected;

Send

The Send method sends data out from the connection port. This operation should be thread-
protected.

Signature

int RiCOSConnectionPort_Send (
RiCOSConnectionPort *const me, struct RiCSData *m) ;

Parameters

me

The Ri COSConnect i onPort object from which to send the data

The data to be sent from the port

Returns

An integer that represents the number of bytes sent through the socket
Example

RiCOSResult RiCOSConnectionPort Send (
RiCOSConnectionPort * const me, struct RiCSData *m)

int rv = 0, m NumberOfMessagesBetweenAck = 0;
RiCOSMutex lock (&me->m_SendMutex) ;

if (me->m_Connected)
char lenStr [MAX LEN STR+1];
(void) sprintf (lenStr, "%d",RiCSData getLength (m)) ;
rv = RiCOSSocket send (&me->m_Socket,
lenStr, MAX LEN STR);
if (rv > 0)
rv = RiCOSSocket_ send (&me->m_Socket,
RiCSData_ getRawData (m), RiCSData_ getLength(m)) ;

if (me->m_ShouldWaitForAck) {
const int maxNumOfMessagesBetweenAck = 127;
/* This MUST match the number in Rhapsody. */
if (maxNumOfMessagesBetweenAck > 0)
m_NumberOfMessagesBetweenAck++;
if (m_NumberOfMessagesBetweenAck >=

Rational Rhapsody 43

The OSAL Classes

maxNumOfMessagesBetweenAck) {
m_NumberOfMessagesBetweenAck = 0;
RiCOSEventFlag wait (
&me->m_AckEventFlag, -1);
RiCOSEventFlag reset (
&me->m_AckEventFlag) ;

}

RiCOSMutex free (&me->m_SendMutex) ;
/* cleanup */

RiCSData_cleanup (m) ;

return rv;

SetDispatcher

The SetDispatcher method sets the connection dispatcher function, which is called whenever
there is an input on the connection port (input from the socket).

Signature

RiCBoolean RiCOSConnectionPort SetDispatcher (
RiCOSConnectionPort *const me,
RiCOS_dispatchfunc dispfunc) ;

Parameters

me

The Ri COSConnect i onPort object

dispfunc

The dispatcher function

Returns

The method returns Ri CTRUE if successful.
Example

RiCBoolean RiCOSConnectionPort SetDispatcher (
RiCOSConnectionPort * const me,
RiCOS_dispatchfunc dispfunc)

if (me==NULL) return RiCFALSE;
me->m_dispatchfunc = dispfunc;
return RiCTRUE;

44 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

RiCOSEventFlag Interface

An event flag is a synchronization object used for signaling between threads. Threads can wait
on an event flag by calling wait. When some other thread signals the flag, the waiting threads
proceed with their execution. The event flag isinitially in the unsignaled (reset) state.

With the Rational Rhapsody implementation of event flags, at least one of the waiting threads
is released when an event flag is signaled. Thisisin contrast to the regular semanticsin some
operating systems, in which all waiting threads are rel eased when an event flag is signaled.

Creation Summary

create Creates an Ri COSEvent Fl ag object
destroy Destroys the Ri COSEvent Fl ag object
cleanup Cleans up after an Ri COSEvent Fl ag object
init Initializes an Ri COSEvent Fl ag object

Method Summary

reset Forces the event flag into a known state

signal Releases a blocked task

wait Blocks the task making the call until some other task
releases it by calling signal on the same event flag
instance

create
The create method creates an Ri COSEvent Fl ag object.

Signature
RiCOSEventFlag *RiCOSEventFlag create() ;

Returns
The newly created Ri COSEvent Fl ag

Example

RiCOSEventFlag * RiCOSEventFlag create ()

RiCOSEventFlag * me = malloc(sizeof (RiCOSEventFlag)) ;
if (me != NULL) RiCOSEventFlag init (me) ;
return me;

}

Rational Rhapsody 45

The OSAL Classes

destroy
The destroy method destroys the Ri COSEvent FI ag object.

Signature
void RiCOSEventFlag destroy (RiCOSEventFlag *const me) ;

Parameters

me

The Ri COSEvent Fl ag aobject to delete

Example

void RiCOSEventFlag destroy (RiCOSEventFlag * const me)

if (me != NULL) {
RiCOSEventFlag cleanup (me) ;
free(me) ;
}
}
cleanup

The cleanup method cleans up the memory after an Ri CEvent Fl ag object is destroyed.

Signature

void RiCOSEventFlag cleanup (RiCOSEventFlag *const me) ;
Parameters

me

The object to clean up after
Example

void RiCOSEventFlag cleanup (RiCOSEventFlag * const me)
if (me != NULL && me->hEventFlag != NULL) {

semDelete (me->hEventFlag) ;
me->hEventFlag = NULL;

init
Theinit method initializesthe Ri CEvent FI ag object.
Signature

RiCBoolean RiCOSEventFlag init (
RiCOSEventFlag *const me) ;

46 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

Parameters

me

The Ri COSEvent Fl ag object to initialize
Returns

The method returns Ri CTRUE if successful.
Example

RiCBoolean RiCOSEventFlag init (RiCOSEventFlag * const me)
if (me == NULL) return RiCFALSE;

me->hEventFlag = semBCreate (SEM_Q FIFO, SEM_EMPTY) ;
return (me->hEventFlag != NULL) ;

}

reset
The reset method forces the event flag into a known state. This method is called almost
immediately prior to await.
Signature

RiCOSResult RiCOSEventFlag reset (
RiCOSEventFlag *const me) ;

Parameters

me

The Ri COSEvent Fl ag object

Returns

TheRi COSResul t object, as defined inthe Ri COS*. h files
Example

RiCOSResult RiCOSEventFlag reset (
RiCOSEventFlag * const me)

if (me == NULL) {return 0;}
semTake (me->hEventFlag, NO WAIT) ;
return (RiCOSResult)1l;

}

signal

The signal method releases ablocked task. If more than one task iswaiting for an event flag, a
call to this method release sat |east one of them.

Rational Rhapsody 47

The OSAL Classes

Signature

RiCOSResult RiCOSEventFlag signal (
RiCOSEventFlag *const me) ;

Parameters

me

The Ri COSEvent Fl ag object
Returns

The Ri COSResul t object, asdefined in the Ri COS*. h files
Example

RiCOSResult RiCOSEventFlag signal (
RiCOSEventFlag * const me)

if (me == NULL) {return 0;}
semGive (me->hEventFlag) ;
return (RiCOSResult)1l;

}
See Also

wal

—+

48 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

wait
The wait method blocks the task making the call until some other task releases it by calling
signal on the same event flag instance.

Signature

RiCOSResult RiCOSEventFlag wait (
RiCOSEventFlag *const me, int tminms) ;

Parameters

me

The Ri COSEvent Fl ag object.

tmins

Specifiesthe length of time, in milliseconds, that the thread should remain blocked. A value of
—1 means to wait indefinitely.

Returns

The Ri COSResul t object, asdefined inthe Ri COs*. h files

Example

RiCOSResult RiCOSEventFlag wait (
RiCOSEventFlag * const me, int tminms)

if (me == NULL) {return 0 /*WAIT FAILED*/;}

if (-1 == tminms) {
semTake (me->hEventFlag, WAIT FOREVER) ;

int ticks = cvrtTmInMStoTicks (tminms) ;
semTake (me->hEventFlag, ticks);

return (RiCOSResult)1;

}
See Also

signal

Rational Rhapsody 49

The OSAL Classes

RiCOSMessageQueue Class

The Ri COSMessageQueue class represents alist of messages (events).

Creation Summary

Create Creates an Ri COSMessageQueue
object

destroy Destroys Ri COSMessageQueue object

cleanup Cleans up after an

Ri COSMessageQueue object
Initializes an R COSMessageQueue

init

object
Method Summary

get Retrieves the message at the beginning of
the message queue

getMessageList Retrieves a list of messages

isEmpty Determines whether the message queue
is empty

isFull Determines whether the message queue
is full

pend Locks the thread making the call until

there is a message in the queue

put Adds a message to the end of the
message queue

create
The create method creates an Ri COSMessageQueue object.

Signature

RiCOSMessageQueue * RiCOSMessageQueue create(
RiCBoolean shouldGrow, int initSize) ;

Parameters

shouldGrow

Determines whether the queue should be of fixed size (Ri CFALSE) or able to expand as
needed (Ri CTRUE).

initSize

Specifiestheinitial size of the queue. The default message queue size is set by the variable
Ri COSDef aul t MessageQueueSi ze.

50 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

The maximum length of the message queue is operating system- and implementation-
dependent. It isusually set in the adapter for a particular operating system.

Returns

The newly created Ri COSMessageQueue
Example

RiCOSMessageQueue * RiCOSMessageQueue_ create(
RiCBoolean shouldGrow, int initSize)

RiCOSMessageQueue * me = malloc(
sizeof (R1COSMessageQueue)) ;

RiCOSMessageQueue init (me, shouldGrow, initSize);
return me;

destroy
The destroy method destroys the Ri COSMessageQueue object.

Signature

void RiCOSMessageQueue destroy (
RiCOSMessageQueue *const me) ;

Parameters
me
The Ri COSMessageQueue object to destroy

Example

void RiCOSMessageQueue destroy (
RiCOSMessageQueue * const me)

if (me == NULL) return;
RiCOSMessageQueue cleanup (me) ;
free (me) ;

Rational Rhapsody 51

The OSAL Classes

cleanup
The cleanup method cleans up after the Rl COSMessageQueue object.

Signature

void RiCOSMessageQueue cleanup (
RiCOSMessageQueue * const me) ;

Parameters

me

The object to clean up after
Example

void RiCOSMessageQueue_ cleanup (
RiCOSMessageQueue * const me)

if (me == NULL) return;
if (me->hvxMQ)

(void)msgQDelete (me->hVxMQ) ;
me->hVxMQ = 0;

init
Theinit method initializes the Ri COSMessageQueue object.

Signature

RiCBoolean RiCOSMessageQueue init (
RiCOSMessageQueue *const me, RiCBoolean shouldGrow,
int initSize) ;
Parameters

me

Specifiesthe Ri COSMessageQueue object to initialize.

shouldGrow

Determines whether the queue should be of fixed size (Ri CFALSE) or able to expand as
needed (Ri CTRUE).

initSize

Specifiesthe initial size of the queue. The default message queue size is set by the variable
Ri COSDef aul t MessageQueueSi ze. You can override the default value by passing a
different value when you create the message queue.

52 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

The maximum length of the message queue is operating system- and implementation-
dependent. It isusually set in the adapter for a particular operating system.

Returns
The method returns Ri CTRUE if successful.
Example

RiCBoolean RiCOSMessageQueue init (

RiCOSMessageQueue * const me, RiCBoolean shouldGrow,

int initSize)

if (me == NULL) return RiCFALSE;

if (initSize < 0) initSize =
RiCOSDefaultMessageQueueSize;
me->m_State = noData;
me->hVxMQ = msgQCreate (initSize, sizeof (void*),

MSG_Q FIFO);
return RiCTRUE;

get
The get method retrieves the message at the beginning of the message queue.

Signature

gen_ptr RiCOSMessageQueue get (
RiCOSMessageQueue * const me) ;

Parameters

me

The Ri COsMessageQueue from which to retrieve the message
Returns

The message
Example

gen_ptr RiCOSMessageQueue_ get (
RiCOSMessageQueue * const me)
{

gen ptr m = NULL;

if (me == NULL) return NULL;

if (me->m State == dataReady) {
m = me->pmessage;

me->m_State = noData;

}

else { /* function returns NULL if there are

Rational Rhapsody 53

The OSAL Classes

no messages in me->hVxMQ queue */
if (msgQReceive (me->hVxMQ, (char*)&m, sizeof (m),
NO WAIT) <= 0)/* nonblocking semantics */
return NULL;

}

return m;

See Also

getMessageListput

getMessagelL.ist
The getMessagel ist method retrieves alist of messages. It is used for two reasons:

¢ To cancel events

When areactive classis destroyed, its notifies its thread to cancel all eventsin the
gueue that are triggered for that reactive class. The thread iterates over the queue,

using getMessagelist to retrieve the data, and marks as canceled al events whose
target isthe reactive class.

+ To show the datain the event queue during animation
Signature

RiCOSResult RiCOSMessageQueue getMessageList (
RiCOSMessageQueue *const me, RiCList *1);

Parameters

me

The Ri COSMessageQueue

1
Thelist of messagesin the queue

Returns
The Ri COSResul t object, as defined inthe Ri COS*. h files
Example

RiCOSResult RiCOSMessageQueue getMessageList (
RiCOSMessageQueue * const me, RiCList * 1)

RiCList_ removeAll (1) ;
if (me == NULL) return O;

if (!RiCOSMessageQueue isEmpty (me)) {
MSG_Q INFO msgQInfo;

if (noData != me->m_State) ({

54 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

RiCList_addTail (1, me->pmessage) ;
}

msgQInfo.taskIdListMax = 0;
msgQInfo.taskIdList = NULL;

/* do not care which tasks are waiting */

msgQInfo.msglListMax = 0;
msgQInfo.msgPtrList = NULL;
msgQInfo.msglLenList = NULL;

/* Do not care about message length. The
first call will retrieve the numMsgs data

member. */

if (OK == msgQInfoGet (me->hVxMQ, &msgQInfo))
if (msgQInfo.numMsgs > 0)
int numMsgs = msgQInfo.numMsgs;
msgQInfo.msgListMax = numMsgs;
msgQInfo.msgPtrList = malloc(
(numMsgs+1) *sizeof (void¥*)) ;
if (OK == msgQInfoGet (me->hVxMQ, &msgQInfo)) {

void *m;
int 1i;
for (i = 0; i < numMsgs; i++) {

m = *(void **)msgQInfo.msgPtrList[i];
RiCList_addTail(l,m);

free (msgQInfo.msgPtrlList) ;

return 1;

See Also

getput

Rational Rhapsody

55

The OSAL Classes

iISEmpty
The isEmpty method determines whether the message queue is empty.

Signature

RiCBoolean RiCOSMessageQueue isEmpty (
RiCOSMessageQueue *const me) ;

Parameters

me

The Ri COSMessageQueue to check
Returns
The method returns one of the following values:

¢ Ri CTRUE—The queueis empty.
¢ Ri CFALSE—The queue is hot empty.

isFull
The isFull method determines whether the message queue isfull.

Signature

RiCBoolean RiCOSMessageQueue isFull (
RiCOSMessageQueue * const me) ;

Parameters

me

The Ri COSMessageQueue to check
Returns
The method returns one of the following values:

¢ Ri CTRUE—The queueisfull.
¢ Ri CFALSE—The queueisnot full.

Example

RiCBoolean RiCOSMessageQueue isFull (
RiCOSMessageQueue * const me)

56 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

MSG _Q INFO msgQInfo;
if (RiCOSMessageQueue isEmpty(me)) return FALSE;

if (OK != msgQInfoGet (me->hvxMQ, &msgQInfo))
return TRUE;/* Assume the worst case. */

if (msgQInfo.numMsgs < msgQInfo.maxMsgs) return FALSE;
} return TRUE;
pend
The pend method blocks the task making the call until there is a message in the queue. A
reader generally waits until the queue contains a message that it can read.
Signature

RiCOSResult RiCOSMessageQueue_ pend (
RiCOSMessageQueue *const me) ;

Parameters

me

The Ri COSMessageQueue
Returns

The Ri COSResul t object, as defined inthe Ri COS*. h files
Example

RiCOSResult RiCOSMessageQueue pend (
RiCOSMessageQueue * const me)

if (me == NULL) return O;

if (me->m State == noData) ({
gen ptr m = NULL;
if (msgQReceive (me->hVxMQ, (char*)&m, sizeof (m),
NO WAIT) <= 0)/* if the queue is empty *
(void) msgQReceive (me->hvxMQ, (char*)é&m,
sizeof (m), WAIT FOREVER);/* wait for message */
me->m_State = dataReady;
| me->pmessage = m;

return 1;

Rational Rhapsody 57

The OSAL Classes

put
The put method adds a message to the end of the message queue.

Signature

RiCOSResult RiCOSMessageQueue put (
RiCOSMessageQueue *const me, gen ptr message,
RiCBoolean fromISR) ;

Parameters

me
The Ri COSMessageQueue to which to add the message

message

The message to be added to the queue

fromISR

A Boolean value that determines whether the message being added was generated from an
interrupt service routine (ISR)

Returns

The Ri COSResul t object, as defined inthe Ri COS*. h files
Example

RiCOSResult RiCOSMessageQueue put (
RiCOSMessageQueue * const me, gen ptr message,
RiCBoolean fromISR)

static gen ptr NULL VAL = NULL;
int timeout = WAIT_FOREVER;
int priority = MSG PRI _NORMAL;

if (message == NULL) message = NULL VAL;

if (fromISR)
timeout = NO _WAIT;
priority = MSG_PRI_URGENT;

return (msgQSend (me->hVxMQ, (char*)&message,
sizeof (message), timeout, priority) == OK) ;

}
See Also

get

getMessagelist

58 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

RiCOSMutex Class

A mutex is the basic synchronization mechanism used to protect critical sections within athread.
Mutexes are used to implement protected objects. The mutex allows one thread mutually exclusive
access to aresource. Mutexes are useful when only one thread at atime can be alowed to modify
data or some other controlled resource. For example, adding nodes to alinked list is a process that
should only be allowed by one thread at atime. By using a mutex to control the linked list, only
one thread at atime can gain accessto thelist.

The Rational Rhapsody implementation of amutex is as arecursive lock mutex. This means that
the same thread can lock the mutex several times without blocking itself. In other words, the mutex
isactually a counted semaphore. When implementing OMOSMut ex for the target environment, you
should implement it as arecursive lock mutex.

Mutexes can be either free or locked (they areinitialy free). When atask executesal ock
operation and finds a mutex locked, it must wait. The task is placed on the waiting queue
associated with the mutex, along with other blocked tasks, and the CPU scheduler selects another
task to execute. If thel ock operation finds the mutex free, the task places alock on the mutex and
entersitscritical section. When any task releases the mutex by calling f r ee, the first blocked task
in the waiting queue is moved to the ready queue, where it can be selected to run according to the
CPU scheduling algorithm.

The same thread can nest | ock and f r ee calls of the same mutex without indefinitely blocking
itself. Nested locking by the same thread does not block the locking thread. However, the nested
locks are counted so the proper f r ee actually releases the mutex.

Creation Summary

create Creates an Ri COSMut ex object
destroy Destroys the Ri COSMut ex object
cleanup Cleans up after an Ri COSMut ex object
init Initializes an Ri COSMut ex object

Method Summary

free Frees the lock, possibly causing the underlying
operating system to reschedule tasks

lock Determines whether the mutex is locked

Rational Rhapsody 59

The OSAL Classes

create
The create method creates an Ri COSMut ex object.

Signature

RiCOSMutex * RiCOSMutex create () ;
Returns

The newly created Ri COSMut ex
Example

RiCOSMutex * RiCOSMutex create ()

RiCOSMutex * me = malloc (sizeof (RiCOSMutex)) ;
RiCOSMutex init (me) ;
return me;

}

destroy
The destroy method destroys the Ri COSMut ex object.

Signature

void RiCOSMutex destroy (RiCOSMutex * const me) ;

Parameters

me

The Ri COsMut ex object to destroy

Example

void RiCOSMutex destroy (RiCOSMutex * const me)

if (me != NULL) {
RiCOSMutex cleanup (me) ;
free(me) ;

60 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

cleanup
The cleanup method cleans up the memory after an Ri COSMut ex object is destroyed.

Signature

void RiCOSMutex cleanup (RiCOSMutex * const me) ;

Parameters

me

The deleted Ri COSMut ex object to clean up after
Example

void RiCOSMutex cleanup (RiCOSMutex * const me)

if (me != NULL && me->hMutex !=NULL)
semDelete (me->hMutex) ;
me->hMutex = NULL;

init
The init method initializes the Ri COSMut ex object.
Signature
RiCBoolean RiCOSMutex_init (RiCOSMutex * const me) ;

Parameters

me

The Ri COsMut ex object toinitialize
Returns

The method returns Ri CTRUE if successful.
Example

RiCBoolean RiCOSMutex init (RiCOSMutex * const me)
if (me == NULL) return O;

me->hMutex = semMCreate (SEM Q FIFO) ;
return (me->hMutex != NULL) ;

Rational Rhapsody 61

The OSAL Classes

free

The free method frees the lock, possibly causing the underlying operating system to
reschedule tasks.

In environments other than pSOSystem, thisis a macro that implements the same interface.
Signature

RiCOSResult RiCOSMutex free (RiCOSMutex *const me) ;

Parameters

me

The Ri COSMut ex object to free
Returns

TheRi COSResul t object, as defined inthe Ri COS*. h files
Example

RiCOSResult RiCOSMutex free (RiCOSMutex * const me)

if (me == NULL) { return 0; }
if (semGive (me->hMutex)==0K)
return 1;
else
return 0;
}
See Also
lock

62 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

lock
The lock method determines whether the mutex is free and reacts accordingly:
¢ If the mutex if free, this operation locks it and allows the calling task to enter its
critical section.

+ If the mutex is aready locked, this operation places the calling task on awaiting
gueue with other blocked tasks.

In environments other than pSOSystem, thisis a macro that implements the same interface.

Signature

RiCOSResult RiCOSMutex lock (RiCOSMutex *const me) ;
Parameters

me

The Ri COsMut ex object to lock
Returns

The Ri COSResul t object, as defined inthe Ri COS*. h files
Example

RiCOSResult RiCOSMutex lock (RiCOSMutex * const me)

{

if (me == NULL) {return 0;}

if (semTake (me->hMutex, WAIT FOREVER)==0K) {
return 1;

else
return 0;

See Also

—h
=
D
D

Rational Rhapsody 63

The OSAL Classes

RiICOSOXF Class

The Ri COSOXF class defines the operating system-specific actions to take at the end of
Ri COXFI ni t after the environment is set (such as the main thread, timer, and so on) and before
the return from the function.

Method Summary

RiCOSEndApplication Ends a running application

RiICOSOXFInitEpilog Initializes the epilog

Constants

The type definitions depend on the deployment environment. For example, if the typeis
“long,” the type definitions would be as follows:

extern const long RiCOSDefaultStackSize;
extern const long RiCOSDefaultMessageQueueSize;

extern const long RiCOSDefaultThreadPriority;

However, if the OXF sourcefileisricoswrap.h and you replace pusL1c With extern, then
the type definitions would be as follows:

extern const RiC StackSizeType RiCOSDefaultStackSize;
extern const RiC MessageQueueSizeType RiCOSDefaultMessageQueueSize;

extern const RiC_ThreadPriorityType RiCOSDefaultThreadPriority;

RiCOSEndApplication

This method ends a running application. The operation should be implemented in the concrete
adapter for the target operating system.

Signature
extern void RiCOSEndApplication (int errorCode) ;
Parameters

errorCode

Specifies the error code to be passed to the operating system, if required
Example

void RiCOSEndApplication (int errorCode)

RiCTask* currentThread, *maint;
RiCOSTask endOfProcess = 1;

#ifdef OMINSTRUMENT

64 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

ARCSD_instance() ;
ARCSD_closeConnection() ;
#endif

currentThread = RiCTask cleanupAllTasks() ;

#ifdef OMINSTRUMENT
ARCSD Destroy () ;
#endif

RiCTimerManager cleanup (&RiCSystemTimer) ;
maint = RiCMainTask () ;

if (maint)

RiCOSHandle maintHandle = RiCOSTask getOSHandle (
RiCTask getOSTask (maint)) ;

char * maintName = taskName (maintHandle) ;

int killmainthread = 1;

if (maintName && *maintName)
if (!strcmp(maintName, "tShell"))
taskRestart (maintHandle) ;
else
taskDeleteForce (maintHandle) ;
killmainthread = 0;

if (killmainthread) ({
RiCTask destroy(maint) ;
}

}

if (currentThread)
RiCOSTaskEndCallBack theOSThreadEnderClb;
void * argl;

/* Get a callback to end the thread. */
(void)RiCTask getTaskEndClbk (
currentThread, &theOSThreadEnderClb,
&argl,RiCTRUE) ;
RiCOSTask_ setEndOSTaskInCleanup (
RiCTask getOSTask (currentThread), FALSE);
/* Do not really end the os thread because you
are executing on this thread and if you do,
there will be a resource leak. */
RiCTask destroy (currentThread) ;
/* Delete the whole object through a virtual
destructor. */
if (theOSThreadEnderClb != NULL) {
(*theOSThreadEnderClb) (argl) ;
/* Now end the os thread. */

}

/* Make sure that the execution thread is being
ended. */
RiCOSTask endMyTask((void *) taskIdSelf());

Rational Rhapsody 65

The OSAL Classes

RiCOSOXFInitEpilog
This method initializes the epilog.

Signature

extern void RiCOSOXFInitEpilog() ;

Example

void RiCOSOXFInitEpilog()

taskDelay (2) ;

66

Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

RiCOSSemaphore Class

A semaphore is a synchronization device that allows alimited number of threadsin one or more
processes to access a resource. The semaphore maintains a count of the number of threads
currently accessing the resource.

Semaphores are useful in controlling access to a shared resource that can support only alimited
number of users. The current count of the semaphore is the number of additional users allowed.
When the count reaches zero, all attempts to use the resource controlled by the semaphore are
inserted into a system gqueue and wait until they either time out or the count again rises above zero.
The maximum number of users who can access the controlled resource at one time is specified at
construction time.

The Rational Rhapsody framework itself does not use semaphores. However, the
Ri COsSemaphor e primitive is provided as a service for environments that need it (such as
Windows NT and pSOSystem).

Creation Summary

create Creates an Ri COSSenaphor e object
destroy Destroys the Ri COSSenmaphor e object
cleanup Cleans up after an Ri COSSermaphor e object
init Initializes an Ri COSSenaphor e object

Method Summary

signal Releases the semaphore token
wait Waits for a semaphore token

Rational Rhapsody 67

The OSAL Classes

create
This method creates an Ri COSSemaphor e object.

Signature

RiCOSSemaphore *RiCOSSemaphore create (
unsigned long semFlags, unsigned long initialCount,
unsigned long maxCount, const char *const name) ;

Parameters

semFlags

The adapter-specific creation flags

initialCount

Theinitial number of tokens available in the semaphore

maxCount

The maximum number of tokens available in the semaphore

name

The unique name of the semaphore
Returns

The newly created Ri COSSemaphor e object
Example

RiCOSSemaphore * RiCOSSemaphore create (
unsigned long semFlags, unsigned long initialCount,
unsigned long maxCount, const char * const name)

RiCOSSemaphore * me = malloc(sizeof (RiCOSSemaphore)) ;

RiCOSSemaphore_init (me, semFlags, initialCount,
maxCount, name) ;

return me;

68 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

destroy
This method destroys the Ri COSSemaphor e object.

Signature

void RiCOSSemaphore destroy (RiCOSSemaphore *const me) ;

Parameters

me

The Ri COSSenaphor e object to destroy

Example
void RiCOSSemaphore destroy (RiCOSSemaphore * const me)
if (me == NULL) return;

RiCOSSemaphore cleanup (me) ;
free(me) ;

cleanup
This method cleans up after the Ri COSSermaphor e object.

Signature

void RiCOSSemaphore cleanup (RiCOSSemaphore *const me) ;

Parameters

me

The object to clean up after

Example

void RiCOSSemaphore cleanup (RiCOSSemaphore * const me)
if (me == NULL) return;

if (me->m_semId)
semFlush (me->m_semId) ;
semDelete (me->m_semId) ;
me->m_semId = NULL;

init
This method initializes the Ri COSSenmaphor e.

Rational Rhapsody 69

The OSAL Classes

Signature

RiCBoolean RiCOSSemaphore init (
RiCOSSemaphore *const me, unsigned long semFlags,
unsigned long initialCount, unsigned long maxCount,
const char *const name) ;

Parameters

me

The Ri COSSenmaphor e object to initialize

semFlags

The adapter-specific creation flags

initialCount

Theinitial number of tokens available in the semaphore

maxCount

The maximum number of tokens available in the semaphore

name

The unique name of the semaphore
Returns
The method returns Ri CTRUE if successful.

Example

RiCBoolean RiCOSSemaphore init (RiCOSSemaphore * const me,
unsigned long semFlags, unsigned long initialCount,
unsigned long maxCount, const char * const name)

if (me == NULL) return RiCFALSE;

me->m_semId NULL;

me->m_semId = semCCreate((int)semFlags,
(int)initialCount) ;

return (me->m semId != NULL) ;

signal
This method rel eases the semaphore token.

Signature

RiCOSResult RiCOSSemaphore signal (
RiCOSSemaphore *const me) ;

70 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

Parameters

me

The Ri COSSemaphor e object
Returns

The Ri COSResul t object, as defined inthe Ri COS*. h files
Example

RiCOSResult RiCOSSemaphore signal (
RiCOSSemaphore * const me)

if (!(me && me->m semId)) return 0;
return (semGive (me->m semId) == OK) ;
See Also
wait

wait
This method waits for a semaphore token.
Signature

RiCOSResult RiCOSSemaphore wait (
RiCOSSemaphore *const me, long timeout) ;

Parameters

me

The Ri COSSenmaphor e object.

timeout

The number of ticksto lock on a semaphore before timing out. The possible values are < 0
(wait indefinitely); O (do not wait); and > O (the number of ticks to wait). For Solaris systems,
avalue of > 0 meansto wait indefinitely.

Returns
The R COSResul t object, asdefined inthe Ri COs*. h files
Example

RiCOSResult RiCOSSemaphore wait (
RiCOSSemaphore * const me, long timeout)

if (!(me && me->m_semId)) return FALSE;

Rational Rhapsody 71

The OSAL Classes

if (timeout < 0) timeout = WAIT FOREVER;

return (semTake (me->m_ semId, timeout) == OK);

See Also

signal

72

Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

RiCOSSocket Class

The Ri COSSocket class represents the socket through which data is passed between Rational
Rhapsody and an instrumented application. Ri COSSocket isgenerally used for animation, but it
can a'so be used for other connections, as long as you provide a host name and port number.

Ri COSSocket represents the client side of the connection, and assumes that somewhere over the
network there is a server listening to the connection.

Creation Summary

create Creates an Ri COSSocket object
destroy Destroys the Ri COSSocket object
cleanup Cleans up after an Ri COSSocket object
init Initializes an Ri COSSocket object
Method Summary

createSocket Creates a new socket
receive Waits on the socket to receive the data
send Sends data through the socket

Create

This method creates an Ri COSSocket object.
Signature

RiCOSSocket *RiCOSSocket create() ;

Returns
The newly created Ri COSSocket
Example

RiCOSSocket *RiCOSSocket create()

RiCOSSocket * me = (RiCOSSocket*)malloc (sizeof (
RiCOSSocket)) ;
if (me != NULL) RiCOSSocket init (me) ;

return me;

}

Rational Rhapsody 73

The OSAL Classes

destroy
This method destroys the Ri COSSocket object.

Signature

void RiCOSSocket destroy (RiCOSSocket *const me) ;

Parameters

me

The Ri COSSocket abject to destroy
Example

void RiCOSSocket destroy (RiCOSSocket * const me)

if (me != NULL) {
RiCOSSocket cleanup (me) ;
free(me) ;
}
}
cleanup

This method cleans up after the Ri COSSermaphor e object
Signature

void RiCOSSocket cleanup (RiCOSSocket *const me) ;

Parameters

me

The Ri COsSocket object to clean up after
Example

void RiCOSSocket cleanup (RiCOSSocket * const me)
if (me == NULL) return;

if (me->theSock != 0)
(void) shutdown (me->theSock, 2) ;
(void) close (me->theSock) ;
me->theSock = 0;

74 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

init
This method initializesthe Ri COSSocket object.

Signature

RiCBoolean RiCOSSocket init (RiCOSSocket *const me) ;

Parameters

me

The R COSSocket object to initialize
Returns
The method returns Ri CTRUE if successful.

Example

RiCBoolean RiCOSSocket init (RiCOSSocket * const me)
if (me == NULL) return O;

me->theSock = 0;
return 1;

}

createSocket
This method creates a new socket.

Signature

int RiCOSSocket createSocket (RiCOSSocket * const me,
const char *SocketAddress, unsigned int nSocketPort) ;

Parameters

me

The Ri COSSocket object.

SocketAddress

The socket address. This can be set to a host name that is a character string. The default value
isNULL.

nSocketPort

The socket port number. The default valueis 0.
Returns

The socket creation status. The possible values are as follows:

Rational Rhapsody 75

The OSAL Classes

¢ 1—Success
¢ O—Failure

Example

int RiCOSSocket createSocket (RiCOSSocket * const me,
const char * SocketAddress, unsigned int nSocketPort)

static struct sockaddr inaddr;

int proto;
char hostName [128];
int rvStat;

if (me == NULL)

if (nSocketPort == 0)

{return 0;}

nSocketPort = 6423;

}

addr.sin family = AF_INET;

proto = IPPROTO_TCP;

(void)gethostname (hostName,

sizeof (hostName) -1) ;

if (NULL != SocketAddress && strlen (SocketAddress)

1= 0)

if (!strcmp (hostName,

SocketAddress)) {

SocketAddress = NULL; }

else {

(void) strcpy (hostName, SocketAddress) ;
addr.sin _addr.s_addr = inet addr (hostName) ;
if (((unsigned long)ERROR) ==

addr.sin addr.s_addr) {
addr.sin_addr.s_addr =

hostGetByName (hostName) ;

if (((unsigned long)ERROR) ==
addr.sin addr.s_addr) {

fprintf (stderr,

of host !
return O0;

}

if (NULL == SocketAddr
—= 0)

"Could not get the address
%s'\n", hostName) ;

ess || strlen(SocketAddress)

addr.sin _addr.s_addr = htonl (INADDR LOOPBACK) ;

}

#ifdef unix
endprotoent () ;
#endif /* unix */

addr.sin_port = htons(

if ((me->theSock = soc
proto)) == -1)
fprintf (stderr,
me->theSock = 0
return 0;

(u_short)nSocketPort) ;
ket (AF_INET, SOCK STREAM,

{

"Could not create socket\n") ;

7

while ((rvStat = connect (me->theSock,

(struct sockaddr *)&addr,

sizeof (addr))) ==

76

Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

SOCKET ERROR && (errno == EINTR)) ;
if (SOCKET_ERROR == rvStat) {
fprintf (stderr, "Could not connect to server
at %s port %d\n Error No. : %d\n", hostName,
(int)nSocketPort, errno) ;
return O0;
return 1;

receive
This method waits on the socket to receive the data.

Signature

int RiCOSSocket receive (RiCOSSocket *const me,
char *buf, int buflen) ;

Parameters

me

TheRi COSSocket object

buf
The string buffer in which datawill be stored

buflen
The length of the buffer

Returns

The method returns one of the following values:

¢ 0—Therewasan error.
¢ n—Thenumber of bytesread.

Example

int RiCOSSocket receive (RiCOSSocket * const me,
char * buf, int bufLen)

int bytes read = 0;
int n;

if (me==NULL) return -1;
while (bytes read < bufLen) {

n = recv(me->theSock, buf + bytes read,
buflLen - bytes read,0);

if (SOCKET_ERROR == n)
if (errno == EINTR) {
continue;

Rational Rhapsody

77

The OSAL Classes

else {
return -1;

}

else {
if (0 == n) { /* Connection closed. */
return -1;

}

bytes read += n;

return bytes read;

send
This method sends data through the socket.

Signature

int RiCOSSocket send (RiCOSSocket *const me,
const char *buf, int bufLen) ;

Parameters

me

The Ri COSSocket object

buf

The constant string buffer that contains the data to be sent

buflen
The length of the buffer

Returns
The method returns one of the following values:

¢ (0—Therewasan error.
¢ n—Thenumber of bytes sent.

Example

int RiCOSSocket send(RiCOSSocket * const me,
const char * buf, int bufLen)

int bytes writ = 0;
int n;

78 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

if (me==NULL) return -1;

while (bytes writ < bufLen) {
n = send(me->theSock, (char *) (buf + bytes writ),
buflen - bytes writ, 0);

if (SOCKET_ERROR == n)
if (errno == EINTR) ({
continue;
else {

return -1;

}

bytes writ += n;

return bytes writ;

See Also

receive

Rational Rhapsody 79

The OSAL Classes

RiCOSTask Class

Creation Summary

The Ri COSTask class provides the basic tasking features.

create Creates an Ri COSTask object
destroy Destroys an Ri COSTask object
cleanup Cleans up after an Ri COSTask object
init Initializes an Ri COSTask object

Method Summary

endMyTask Terminates the current task
endOtherTask Terminates a task other than the current one

exeOnMyTask

Determines whether the method was invoked from the
same operating system task as the one on which the
object is running

getCurrentTaskHandle

Gets the handle to the active task

getOSHandle

Returns a handle to the underlying operating system
task

getTaskEndClbk Is a callback function that ends the current operating
system thread
resume Resumes a suspended task

setEndOSTaskInCleanup

Determines whether destruction of the Ri COSTask
class should kill the operating system task associated
with the class

setPriority Sets the priority for the task
start Starts executing the task
suspend Suspends a task

80

Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

create
This method creates anew Ri COSTask object.
Signature

RiCOSTask *RiCOSTask create (RiCOSTaskEndCallBack tfunc,
void *param, const char *name,
const long stackSize) ;

Parameters

tfunc

The callback function that ends the current operating system task

param

The parameters of the callback function

name

The name of the task

stackSize

The size of the stack
Returns
The newly created Ri COSTask

Example

RiCOSTask * RiCOSTask create (RiCOSTaskEndCallBack tfunc,
void * param, const char * name, const long stackSize)

RiCOSTask * me = malloc(sizeof (RiCOSTasgk)) ;

RiCOSTask_init (me, tfunc, param, name, stackSize);
return me;

}

destroy
This method destroysthe Ri COSTask object.

Signature
void RiCOSTask destroy (RiCOSTask *const me) ;
Parameters

me

The Ri COSTask object to destroy

Rational Rhapsody

81

The OSAL Classes

Example

void RiCOSTask destroy (RiCOSTask * const me)

if (me == NULL) return;
RiCOSTask cleanup (me) ;
free (me) ;

cleanup

This method cleans up the memory after aRi COSTask object is deleted.
Signature

void RiCOSTask cleanup (RiCOSTask *const me) ;

Parameters

me

The Ri COSTask object to clean up after
Example

void RiCOSTask cleanup (RiCOSTask * const me)
if (me == NULL) return;

if (!me->isWrapperThread) {

RiCOSEventFlag cleanup (&me->m_SuspEventFlag) ;

/* Remove the thread. */

if (me->endOSTaskInCleanup)
RiCBoolean onMyTask = RiCOSTask exeOnMyTask (me) ;
if (! ((RiCOSTask endOfProcess) &&
RiCOSTask exeOnMyTask (me))) {
/* Do not kill the 0OS thread if this is the
end of process and the running thread
is 'this' - you need the 0S thread to do
some cleanup, and then you kill it
explicitly. */
RiCOSTaskEndCallBack theOSTaskEndClb = NULL;
void * argl = NULL;
/* Get a callback function to end the 0S
thread. */
(void) RiCOSTask getTaskEndClbk (me,
&theOSTaskEndClb, &argl, onMyTask) ;
if (theOSTaskEndClb != NULL) {
/* End the 0S thread */
(*theOSTaskEndClb) (argl) ;

82 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

(R1iCOSTask *const me,

init

This method initializes the Ri COSTask object.
Signature

RiCBoolean RiCOSTask init

RiCOSTaskEndCallBack tfunc, void *param,
const char *name, const long stackSize);

Parameters

me

The Ri COSTask object to initialize

tfunc

The callback function that ends the current operating system task

param

The parameters to the callback function

name

The name of the task

stackSize

The size of the stack
Returns

The method returns Ri CTRUE if successful.
Example

RiCBoolean RiCOSTask_init (RiCOSTask * const me,

RiCOSTaskEndCallBack tfunc, void * param,
const char * name, const long stackSize)

size t i, len = 0;
char* myName = NULL;

if (me == NULL) {return 0;}

me->endOSTaskInCleanup = TRUE;
me->isWrapperThread = 0;

/* Copy the thread name. */

if (name != NULL) len = strlen(name) ;

/* check for legal name */

for (i = 0; i < len; i++) {

if ((isalnum((int)name[i]) == 0) &&

(name [1] !'= ' _'))
len = 0;
break;

Rational Rhapsody

83

The OSAL Classes

if (len > 0) {
myName = malloc(len + 1);
strcpy (myName, name) ;

RiCOSEventFlag init (&me->m SuspEventFlag) ;
RiCOSEventFlag reset (&me->m_SuspEventFlag) ;
/* Create SUSPENDED thread !!!!!! */
me->m_ExecFunc = tfunc;

me->m_ExecParam = param;

me->hThread = 0;

me->hThread = taskSpawn (myName,

/* name of new task (stored at pStackBase)
(int) PRIORITY NORMAL, /* priority of new task

/* task option word */

int (*) ())preExecFunc, /* thread function */

*/

OI
(int) stackSize, /*size (bytes) of stack needed */
(
(

int) (void *)me, /* argument to thread function */

0,0,0,0,0,0,0,0,0);
return 1;

endMyTask
This method terminates the current task.

Signature
void RiCOSTask endMyTask (void * t);
Parameters

t
The current task
Example

void RiCOSTask endMyTask (void *hThread)
taskDeleteForce ((int) hThread) ;

/* Force because this is probably waiting on
something */

}
See Also

endOtherTask

exeOnMyTask

getCurrentTaskHandle

84

Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

endOtherTask
This method terminates atask other than the current task.

Signature

RiCBoolean RiCOSTask endOtherTask (void * t);

Parameters

t
The task to end

Returns
The method returns Ri CTRUE if it successfully terminated the task.

Example

RiCBoolean RiCOSTask_endOtherTask (void *hThread)

taskDeleteForce ((int) hThread) ;

/* Force because this is probably waiting on
something */

return RiCTRUE;

See Also

endMyTask

exeOnMyTask

getCurrentTaskHandle

Rational Rhapsody 85

The OSAL Classes

exeOnMyTask
This method determines whether the method was invoked from the same operating system
task as the one on which the object is running.
Signature

RiCBoolean RiCOSTask exeOnMyTask (RiCOSTask *const me) ;

Parameters

me

The Ri COSTask object to compare
Return
The method returns one of the following values:
¢ R CTRUE—The method was invoked from the same operating system task as the

one on which the object is running.
¢ Ri CFALSE—The tasks are not the same.

Example

RiCBoolean RiCOSTask_exeOnMyTask (RiCOSTask * const me)

RiCOSHandle executedOsHandle;
RiCOSHandle myOsHandle;
RiCBoolean res;

if (me == NULL) return RiCFALSE;

/* A handle to the thread that executes the delete */
executedOsHandle = RiCOSTask_getCurrentTaskHandle() ;
/* A handle to ‘this’ thread */
myOsHandle = RiCOSTask getOSHandle (me) ;
res = ((executedOsHandle == myOsHandle) °?

RiCTRUE : RiCFALSE) ;
return res;

}
See Also

endMyTask

endOtherTask

getCurrentTaskHandle

86 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

getCurrentTaskHandle
This method gets the handle to the active task.

Signature

RiCOSHandle RiCOSTask getCurrentTaskHandle () ;

Returns
The handle to the active task
Example

RiCOSHandle RiCOSTask getCurrentTaskHandle ()

return (RiCOSHandle)taskIdSelf () ;

See Also

getOSHandle
getOSHandle
This method returns a handle to the underlying operating system task.
Signature

RiCOSHandle RiCOSTask getOSHandle (RiCOSTask *const me) ;

Parameters

me

The Ri COSTask object whose handle you want to retrieve
Returns

The operating system handle
Example

RiCOSHandle RiCOSTask getOSHandle (RiCOSTask * const me)

if (me == NULL) {return 0;}
return (RiCOSHandle)me->hThread;

See Also

getCurrentTaskHandle

Rational Rhapsody 87

The OSAL Classes

getTaskEndClbk
This method is a callback function that ends the current operating system thread.

Signature

int RiCOSTask getTaskEndClbk (RiCOSTask * const me,
RiCOSTaskEndCallBack * clb p, void ** argl p,
RiCBoolean onExecuteTask) ;

Parameters

me

The Ri COSTask object.

clb_p

A pointer to the callback function that ends the thread. This can be either endMyTask() or
endQt her Task() .

argl_p
The argument for the callback function.

onExecut eTask

Set this to one of the following Boolean values:

Ri CTRUE-The object should kill its own task.

Ri CFALSE-aAnother object should kill the task.

Returns
The status. The possible values are as follows:

¢ 1—Success
¢ O0—Failure

Example

int RiCOSTask getTaskEndClbk (R1COSTask * const me,
RiCOSTaskEndCallBack * clb p,
void ** argl p, RiCBoolean onExecuteTask)

if (me == NULL) return O;

if (onExecuteTask) {
/* Ask for a callback to end my own thread. */

*clb p = (RiCOSTaskEndCallBack) &
RiCOSTask_endMyTask;
argl p = (void)me->hThread;

}

else {
/* Ask for a callback to end my thread by
someone else. */

88 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

*clb p = (RiCOSTaskEndCallBack) &
RiCOSTask_ endOtherTask;

/* My thread handle. */

argl p = (void)me->hThread;

return 1;

resume

This method resumes a suspended task. This method is not used in generated code—it is used
only for advanced scheduling.

Thesuspend and r esume methods provide away of stopping and restarting atask. Tasks

usually block when waiting for aresource, such as amutex or an event flag, so both arerarely
used.

Signature

RiCOSResult RiCOSTask resume (RiCOSTask *const me) ;

Parameters

me

The Ri COSTask object to resume
Returns

The Ri COSResul t object, asdefined inthe Ri COs*. h files
Example

RiCOSResult RiCOSTask resume (RiCOSTask * const me)
if (me == NULL) {return 0;}

(void) taskResume (me->hThread) ;
return 1;

See Also

Rational Rhapsody 89

The OSAL Classes

setEndOSTaskInCleanup

This method determines whether destruction of the Ri COSTask class should kill the operating

system task associated with the class. If the method returns Ri CTRUE, the task will be ended at
the Ri COSTask cleanup.

Signature

int RiCOSTask setEndOSTaskInCleanup (
Ri1iCOSTask *const me, RiCBoolean val) ;

Parameters

me

The Ri COsTask object.

val

The possible values are as follows:

Ri CTRUE-The task is ended as part of the object’s destruction process.

Ri CFALSE-The task is not ended when the object is destroyed.

Returns
The status. The possible values are as follows:

¢ 1—Success
¢ O0—Failure
Example

int RiCOSTask setEndOSTaskInCleanup (
RiCOSTask * const me, RiCBoolean val)

{

if (me == NULL) {return 0;}

me->endOSTaskInCleanup = val;
return 1;

90 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

setPriority
This method sets the priority for the task.

Signature

RiCOSResult RiCOSTask setPriority (RiCOSTask *const me,
int pr);

Parameters

me

TheRi COSTask object.

pr
The integer value of the priority. This parameter varies by operating system.

Returns
TheRi COSResul t object, as defined inthe Ri COS*. h files
Example

RiCOSResult RiCOSTask setPriority(
RiCOSTask * const me, int pr)

if (me == NULL) {return 0;}
taskPrioritySet (me->hThread, pr);
return 1;
See Also
start

start
This method starts executing the task. Initially, tasks are suspended until st art iscalled.

Signature

RiCOSResult RiCOSTask start (RiCOSTask *const me) ;

Parameters

me

The Ri COSTask object to start
Returns

The Ri COSResul t object, as defined inthe Ri COS*. h files

Rational Rhapsody 91

The OSAL Classes

Example

RiCOSResult RiCOSTask start (RiCOSTask * const me)
if (me == NULL) {return 0;}

if (RiCOSEventFlag exists (&me->m_SuspEventFlag)) {
RiCOSEventFlag signal (&me->m_SuspEventFlag) ;
RiCOSEventFlag cleanup (&me->m_SuspEventFlag) ;

}

else {

}

return 1;

RiCOSTask resume (me) ;

}
See Also

resume

suspend

suspend

This method suspends atask. This method is not used in generated code—it is used only for
advanced scheduling.

Signature

RiCOSResult RiCOSTask suspend (RiCOSTask *const me) ;

Parameters

me

The Ri COSTask object to suspend
Returns

TheRi COSResul t object, as defined inthe Ri COS*. h files
Example

RiCOSResult RiCOSTask suspend(RiCOSTask * const me)

if (me == NULL) {return 0;}
(void) taskSuspend (me->hThread) ;
return 1;
See Also
resume
start

92

Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

RiCOSTimer

The Ri COSTi ner classisabuilding block for Ri CTi mer Manager , which provides basic timing
servicesfor the execution framework. In the Rational Rhapsody implementation, the timer runs on
its own task. Therefore, the target operating system must support multitasking.

Creation Summary

create Creates an Ri COSTi ner object
destroy Destroys an Ri COSTi mer object
cleanup Cleans up after an Ri COSTi mer object
init Initializes an Ri COSTi ner object

create
This method creates an Ri COSTi mer object.

Signature

RiCOSTimer * RiCOSTimer create (timeUnit ptime,
void (*cbkfunc) (void *), void * params) ;

Parameters

pTime

The time between each tick of the timer. In most adapters, the time unit is milliseconds,
however, this depends on the specific adapter implementation.

cbkfunc

Thetick-timer call-back function used to notify the timer client that atick occurred.

params

The parametersto the callback function.
Returns
The newly created Ri COSTi mer

Example

RiCOSTimer * RiCOSTimer create(timeUnit ptime,
void (*cbkfunc) (void *), void * params)

RiCOSTimer * me = malloc (sizeof (RiCOSTimer)) ;
RiCOSTimer init (me, ptime, cbkfunc, params) ;
return me;

Rational Rhapsody 93

The OSAL Classes

destroy
This method destroys the Ri COSTi mer object.

Signature
void RiCOSTimer destroy (RiCOSTimer *const me) ;

Parameters

me

The Ri COSTi ner object to destroy

Example
void RiCOSTimer destroy(RiCOSTimer * const me)
if (me == NULL) return;

RiCOSTimer cleanup (me) ;
free (me) ;

cleanup
This method cleans up the memory after an Ri COSTi ner object is deleted.

Signature
void RiCOSTimer_cleanup (RiCOSTimer * const me) ;
Parameters

me

TheRi COSTi mer object to clean up after

Example

void RiCOSTimer_cleanup (RiCOSTimer * const me)
if (me == NULL) return;

if (me->hThread) ({

RiCOSHandle executedOsHandle =
RiCOSTask_getCurrentTaskHandle () ;

/* A handle to this 'thread' */

RiCOSHandle myOsHandle = me->hThread;

RiCBoolean onMyThread = ((executedOsHandle ==
myOsHandle) ? TRUE : FALSE) ;

if (onMyThread) {

} RiCOSTask_ endMyTask ((void*)myOsHandle) ;

else {

94 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

RiCOSTask endOtherTask ((void*)myOsHandle) ;

me->hThread = 0;

init
This method initializes the Ri COSTi mer object.
Signature
RiCBoolean RiCOSTimer init (RiCOSTimer *const me,
timeUnit ptime, void (*cbkfunc) (void ¥*),
void *params) ;
Parameters

me

The Ri COSTi ner object to initialize.

pTime
The time between each tick of the timer. In most adapters, the time unit is milliseconds;
however, this depends on the specific adapter implementation.

cbkfunc
The tick-timer call-back function used to notify the timer client that atick occurred.

params

The parameters to the callback function.
Returns

The method returns Ri CTRUE if successful.

Example
RiCBoolean RiCOSTimer init (RiCOSTimer * const me,
timeUnit ptime, void (*cbkfunc) (void *), void *params)
if (me == NULL) return RiCFALSE;
me->cbkfunc = cbkfunc;
me->param = params;
if (((RiCTimerManager*)params)->realTimeModel) {
/***x%x VxWorks TickTimer (Real Time) *x***/
me->m Time = ptime;

/* Create a thread that runs the bridge, passing
this as an argument. */
me->ticks = cvrtTmInMStoTicks (me->m Time) ;
me->hThread = taskSpawn("timer", PRIORITY HIGH, O,
SMALL_ STACK, (int (*) ())bridge,
(int) (void *)me /*pl*/, 0,0,0,0,0,0,0,0,0);
return me->hThread != ERROR;

Rational Rhapsody 95

The OSAL Classes

else {

/***xx TdleTimer (Simulated Time) ***%x/

me->m Time = 0; /* Just create context-switch
until the system enters idle mode. */

me->hThread = taskSpawn("timer", PRIORITY LOW, O,
SMALL_ STACK, (int (*) ())bridge, (int) (void*)me,
0,0,0,0,0,0,0,0,0);

return RiCTRUE;

96

Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C

RiCHandleCloser Class

OSAL interface contains ricosTask_endMyTask method which should be used if athread should
be deleted by itself (for example, if active reactive class entered into terminate connector).

But in some RTOSes it is forbidden for thread perform such operation directly. The
RiCHandleCloser class solvesthis problem. It is an active reactive singleton class with a statechart
containing one state. This state receives only one event (closeEvent) and performs only one
action (docloseHandle () call) whenitisreceived.

OMHandleClose thread isinitialized in the OMOS::initEpilog():

void RiCOSOXFInitEpilog (void)

{

(void)RiCHandleCloser startBehavior (RiCHandleCloser Instance (RiCInt doCloseH
andle)) ;

}

If some thread is going to exit it calls (from framework) endmyTask () function which sends
CloseEvent message (event) t0the HandleCloser thread.

void RiCOSTask endMyTask (RiC_CONST TYPE void *const hThread)

{

if (hThread != NULL)

{

RiCHandleCloser genCloseEvent (hThread) ;

Exit (OUL);

}
This message contains the handle of the thread, which should be deleted.

The doc1osenandle is static function, which is called by HandleCloser thread when c1oseEvent
event is processed.

You can see HandleCloser usage in Integrity adapter (share/LangC/oxf/RiCOSIntegrity.c
file).

Note
A similar mechanism isimplemented in C++ framework.

Rational Rhapsody 97

The OSAL Classes

Rational Rhapsody Developer for C++

The C++ classes for the abstract interface are as follows:

*

OMEventQueue Class

OMMessageQueue Class

OMOS Class

OMOSConnectionPort Class

OMOSEventFlag Class

OMOSFactory Class

OMOSMessageQueue Class

OMOSMutex Class

OMOSSemaphore Class

OMOSSocket Class

OMOSThread Class

OMOSTimer Class

OMTMMessageQueue Class

OMEventQueue Class

OMEventQueue inherits from oMTMMe ssageQueue<> With OMEvent as a parameter. In other
words, OMEventQueueis alist (vector/queue) of events.

Construction Summary

‘ OMEventQueue

‘ Creates an OMOSEvent Queue object ‘

Method Summary

‘ getOsQueue

‘ Retrieves the event queue ‘

98

Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

OMEventQueue

This method constructs an OVEvent Queue object and initializes the

OMTMVessageQueue<QVEvent > superclass of the event queue, with the given size and
ability to grow dynamically.

Visibility
Public
Signature

OMEventQueue (const long messageQueueSize =
OMOSThread: :DefaultMessageQueueSize,
OMBoolean dynamicMessageQueue = TRUE)
OMTMMessageQueue<OMEvent > (messageQueueSize,
dynamicMessageQueue)

Parameters

messageQueueSize

The size of the message queue. If not overridden, the message queue size isinitialized to the
value of the static constant Def aul t MessageQueueSi ze in OMOSThr ead.

dynamicMessageQueue

A Boolean value that specifies whether the message queue size is dynamic (TRUE) or fixed
(FALSE). By default, the message queue size is dynamic.

getOsQueue
This method retrieves the event queue.
Visibility
Public
Signature

OMOSMessageQueue * getOsQueue ()

Rational Rhapsody 99

The OSAL Classes

OMMessageQueue Class

OMM essageQueue inherits from OMIMves sageQueue<> with OvVBDat a as a parameter. In
other words, OMMessageQueue isalist (vector/queue) of serialized data. The
OM\VessageQueue<OVBDat a> parameterized classis declared only if instrumentation is
defined.

OvBDat a isthe base class for all messages passed between the aomand t omlibraries during
instrumentation.

OMOS Class

The OMOS class defines the operating system-specific actions to take at the end of OXF: @i ni t
after the environment is set (such as the main thread, timer, and so on) and before the return from
the function.

Method Summary

endApplication Ends a running application
endProlog Ends the prolog
initEpilog Executes operating system-specific actions to be taken

at the end of OXF: : i ni t after the environment has
been set (that is, the main thread and the timer have
been started) and before it returns

endApplication

This method ends a running application. This operation should be implemented in the concrete
adapter for the target operating system.

Visibility
Public
Signature

static void endApplication(int errorCode) ;

Parameters

errorCode

The error code to be passed to the operating system, if required

100 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

endProlog
This method ends the prolog.

Visibility
Public
Signature
static void endProlog() ;
initEpilog
This method executes operating system-specific actions to be taken at the end of OXF: @i ni t
after the environment has been set (that is, the main thread and the timer have been started)

and before it returns. This operation should be implemented in the concrete adapter for the
target operating system.

Visibility
Public
Signature

static void initEpilog() ;

Rational Rhapsody 101

The OSAL Classes

OMOSConnectionPort Class

The connection port is used for interprocess communication between instrumented applications

and Rational Rhapsody. The factory’s cr eat eOMOSConnect i onPor t () method creates a
connection port.

Construction Summary

~OMOSConnectionPort Destroys the OMOSConnect i onPor t
object.

Method Summary

Connect Connects to the specified port
Send Sends data from the connection port
SetDispatcher Sets the dispatcher function

~OMOSConnectionPort

This method destroys the OMOSConnect i onPor t object. You must declare the destructor
explicitly, rather than letting the compiler add it, because it must be made virtual.

Visibility
Public
Signature
virtual ~OMOSConnectionPort ()

Connect

This method connects a process to the instrumentation server at a given socket address and
port.

Visibility
Public
Signature

virtual int Connect (const char* SocketAddress = NULL,
unsigned int nSocketPort = 0) = 0;

Parameters

SocketAddress

The socket address. If you do not specify a socket address, its default valueisa NULL string.

102 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

nSocketPort

The port number of the socket. If you do not specify a port number, the value O is used.

Returns
The connection status. The possible values are as follows:

¢ 1—Success
¢ O0—Failure

Send

This method sends data out from the connection port. This operation should be thread
protected.

Visibility
Public
Signature

virtual int Send (OMSData *m) = 0;

Parameters

m

The data to be sent from the port. The datais of type OvsDat a, which isdefined in
omCom onsdat a. h. It encapsulates the methods by which serialized data is passed between
an instrumented application and the animation/tracing server.

Return

An integer that represents the number of bytes that were sent through the socket

Rational Rhapsody 103

The OSAL Classes

SetDispatcher

This method sets the dispatcher function, which is called whenever there is an input on the
connection port (input from the socket).

This method was created for two reasons;

* Toprovideflexibility by allowing for different dispatch routines. For example, the
Rational Rhapsody framework uses Set Di spat cher (port ToMessageQueue)
inaondi sp. cpp.

¢ To alow the dispatch routine to be located in a different place and to be set only
after creation of the connection port.

Visibility
Public
Signature
virtual void SetDispatcher (void dispfunc (OMSData*)) = 0;
Parameters

dispfunc

The dispatcher function

104 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

OMOSEventFlag Class

An event flag is a synchronization object used for signaling between threads. Threads can wait on
an event flag by calling wai t . When some other thread signals the flag, the waiting threads
proceed with their execution. The event flag isinitially in the unsignaled (reset) state.

With the Rational Rhapsody implementation of event flags, at |east one of the waiting threadsis
released when an event flag isreset. Thisisin contrast to the regular semantics in some operating
systems, in which all waiting threads are rel eased when an event flag is reset.

The operating system factory’s cr eat eOMOSEvent FI ag method creates a new event flag.

Construction Summary

~OMOSEventFlag Destroys the OMOSEvent FI ag object

Method Summary

getOsHandle Retrieves the thread’s operating system ID

reset Forces the event flag into a known state

signal Releases a blocked thread

wait Blocks the thread making the call until some other
thread releases it by calling si gnal on the same event
flag instance

~OMOSEventFlag

This method destroys the OMOSEvent FI ag object. You must declare the destructor explicitly,
rather than letting the compiler add it, because it must be made virtual.

Visibility
Public
Signature

virtual ~OMOSEventFlag()

Rational Rhapsody 105

The OSAL Classes

getOsHandle
This method retrieves the thread's operating system ID. This value varies by operating system.

Visibility
Public
Signature

virtual void* getOsHandle() const = 0;

Return

The operating system 1D

reset

This method forces the event flag into a known state. This method is often called immediately
prior to awai t .

Visibility
Public
Signature
virtual void reset () = 0;

signal

This method rel eases a blocked thread. If more than one task is waiting for an event flag, acall
to this method releases at |east one of them.

Visibility
Public
Signature

virtual void signal() = 0;

106 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

wait
This method blocks the thread making the call until some other thread releases it by calling
si gnal onthe same event flag instance.

Visibility

Public
Signature

virtual void wait (int tminms = -1) = 0;
Parameters

tminms

Thelength of time, in milliseconds, that the thread should remain blocked. The default valueis
-1, which means to wait indefinitely.

Notes

If an operating system does not support the ability to wait on an event flag with atimeout (for
example, Solaris), the Rational Rhapsody framework implements wait with timeouts by
dicing the time to 50 msintervals, then checks every 50 msto seeif the event flag was
signaled.

Rational Rhapsody 107

The OSAL Classes

OMOSFactory Class

Each concrete GSFact or y inherits publicly from the abstract class OMOSFact ory.
OMOSFact or y hides the RTOS mechanisms for tasking and synchronization. In addition, the
OSFact or y provides other operating system-dependent services that the Rational Rhapsody
framework requires, such as obtaining a handle to the current thread.

The following sequence diagram shows the OSFact or y creating various operating system
entities, such as OMOSMessageQueue and OMOSConnect i onPor't .

createOMOSMessageQueue()

createOMOSCorjnectionPort() |

createOMOSEventFlag() |

createOMOSThread(void tfunc({void *), void *param

createOMOSWrapperThread(void|*osHandle)

createOMOSTickTimer(long time, [void cbkfunc(void|*), void *param) |

createOMOSIdieTimer(void cbkfulc(void *), void *param) | |

108 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

Construction Summary

instance

Creates a single instance of the
OMOSFact ory

Method Summary

createOMOSConnectionPort

Creates a connection port

createOMOSEventFlag

Creates an event flag

createOMOSIdleTimer

Creates an idle timer

createOMOSMessageQueue

Creates a message queue

createOMOSMutex Creates a mutex
createOMOSSemaphore Creates a semaphore
createOMOSThread Creates a thread

createOMOSTickTimer

Creates a tick timer

createOMOSWrapperThread

Creates a wrapper thread

delayCurrentThread

Delays the current thread for the specified
length of time

getCurrentThreadHandle

Gets the handle to the current thread

waitOnThread

Waits on the thread for the specified

length of time

instance

This method creates a single instance of OMOSFact or y. This function must be implemented
for agiven RTOS to return a pointer to the operating system adapter factory designed
specifically for that RTOS.

Visibility
Public
Signature
stati c OMOSFactory* instance();

Notes

To create an operating system entity, you call one of the methods through the pointer returned
by i nst ance. For example, to create an event flag, use the following call:

i nstance() - >cr eat eOMOSEvent Fl ag()

Rational Rhapsody 109

The OSAL Classes

createOMOSConnectionPort
This method creates a connection port.

Visibility
Public
Signature

virtual OMOSConnectionPort* createOMOSConnectionPort ()
= 0;

Return

The new connection port

createOMOSEventFlag
This method creates an event flag.

Visibility
Public

Signature
virtual OMOSEventFlag* createOMOSEventFlag() = 0;

Return

The new event flag

createOMOSIdleTimer
This method creates an idle timer.

Visibility
Public
Signature

virtual OMOSTimer* createOMOSIdleTimer (
void cbkfunc (void *), void *param) = 0;

Parameters

cbkfunc
The callback function

param

110 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

The parameters for the callback function

Return

The new idle timer

createOMOSMessageQueue
This method creates a message queue.
Visibility
Public

Signature

vi rtual OMVOSMessageQueue* creat eOMOSMessageQueue(
OVBool ean shoul dG ow = TRUE,

const |ong nessageQueueSi ze =
OMOSThr ead: : Def aul t MessageQueueSi ze) = 0;

Parameters

shouldGrow
A Boolean value that determines whether the size of the message queue can be increased to
yield more room

messageQueueSize

The default size of the message queue
Return

The new message queue

Rational Rhapsody 111

The OSAL Classes

createOMOSMutex
This method creates a mutex.

Visibility
Public
Signature

virtual OMOSMutex* createOMOSMutex() = 0;

Return

The new mutex

createOMOSSemaphore
This method creates a semaphore.
Visibility
Public
Signature
virtual OMOSSemaphore* createOMOSSemaphore (
unsigned long semFlags = 0, unsigned long
initialCount = 1, unsigned long maxCount = 1,
const char * const name = NULL) = 0;
Parameters
semFlags

The semaphore flags

initialCount

Theinitial count of tokens available on the semaphore

maxCount

The maximum number of tokens

name

The name of the semaphore
Return

The new semaphore

112 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

createOMOSThread
This method creates a thread.

Visibility
Public
Signature

virtual OMOSThread* createOMOSThread (void tfunc (void *),
void *param, const char* const threadName = NULL,
const long stackSize = OMOSThread::DefaultStackSize)
= 0;

Parameters

tfunc

The thread function

param

The parametersfor t f unc

threadName

The name of the thread

stackSize

The stack size
Return

The new thread

Rational Rhapsody 113

The OSAL Classes

createOMOSTickTimer
This method creates a new tick timer.

Visibility
Public
Signature

virtual OMOSTimer* createOMOSTickTimer (timeUnit time,
void cbkfunc(void *), void *param) = 0;

Parameters

time

The time between ticks

cbkfunc
The callback function

param

The parameters for cbkf unc
Return

The new tick timer

createOMOSWrapperThread
This method creates awrapper thread.

Visibility
Public
Signature

virtual OMOSThread* createOMOSWrapperThread (
void* osHandle) = 0;

Parameters

osHandle

The handle to the operating system
Return

The new wrapper thread

114 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

delayCurrentThread
This method delays the current thread for the specified length of time.

The OXFTDel ay(ti m n\Ms) macro provides a convenient shortcut for calling
delayCurrentThread.

Visibility
Public
Signature

virtual void delayCurrentThread (timeUnit ms) = 0;

Parameters

ms

The length of time, in milliseconds, to delay processing on the current thread

getCurrentThreadHandle

This method returns the native operating system handle to the thread. This handleis used to
identify athread or to apply operating system-specific operations to a thread.

Visibility
Public
Signature

virtual void* getCurrentThreadHandle() = 0;

Return

The OSThr eadHandl e

Rational Rhapsody 115

The OSAL Classes

waitOnThread
This method waits for a thread to terminate.

Visibility
Public

Signature

virtual OMBoolean waitOnThread (void* osHandle,
timeUnit ms) = 0;

Parameters

osHandle

The operating system handle

ms

The length of time to wait, in milliseconds

Return

The method returns one of the following Boolean values:

¢ TRUE—The method was successful.
¢ FALSE—The method failed.

116 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

OMOSMessageQueue Class

An important building block for the execution framework class OMThr ead, the message queue is
initially empty. The factory’scr eat eOMOSMessageQueue method creates an operating system

message queue.

The default message queue sizeis set by the static constant variable
OMOSThr ead: : Def aul t MessageQueueSi ze. You can override the default value by passing a
different value as the second argument to the factory’s cr eat eOMOSMessageQueue method

when you create the message queue.

The maximum length of the message queue is operating system- and implementation-dependent. It
isusually set in the adapter for a particular operating system.

Construction Summary

~OMOSMessageQueue

Destroys the OMOSMessageQueue object

Method Summary

get

Retrieves the message at the beginning of the queue

getMessagelList

Retrieves the list of messages

getOsHandle

Returns the native operating system handle to the
thread

isEmpty Determines whether the queue is empty

isFull Determines whether the queue is full

pend Blocks the thread making the call until there is a
message in the queue

put Adds a message to the queue

setOwnerProcess Sets the thread that owns the message queue

Rational Rhapsody

117

The OSAL Classes

~OMOSMessageQueue

This method destroys the OMOSMessageQueue object. You must declare the destructor
explicitly, rather than letting the compiler add it, because it must be made virtual.

Visibility
Public
Signature
virtual ~OMOSMessageQueue ()
get
This method retrieves the message at the beginning of the queue.
Visibility
Public
Signature
virtual void *get() = 0;
Return

The first message in the queue

getMessageL.ist
This method retrieves the list of messages. It is used for two reasons:

¢ Tocancel events.

When areactive classis destroyed, it notifies its thread to cancel al eventsin the
gueue that are targeted for that reactive class. The thread iterates over the queue,
using get Messageli st to retrieve the data, and marks all events whose target is
the reactive class as cancel ed.

¢ To show the datain the event queue during animation.
Visibility

Public
Signature

virtual void getMessageList (OMList<void*>& c) = 0

118 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

Parameters
C

Thelist of messagesin the event (message) queue.

Thelist is of type OMLi st <voi d* >, aparameterized type defined in oxf \ ond i st . h that

encapsulates all the operationstypically performed on lists, such asadding itemsto thelist and
removing items from the list.

getOsHandle

This method returns the native operating system handle to the thread. This handleis used to
identify athread or to apply operating system-specific operations to a thread.

Visibility
Public
Signature

virtual void* getOsHandle() const = 0;

Return
The handle
iISEmpty

This method determines whether the message queue is empty.
Visibility

Public
Signature

virtual int isEmpty() = 0;
Return

The method returns one of the following values:

¢ 0—The queueis not empty.
¢ 1—Thequeueisempty.

Rational Rhapsody 119

The OSAL Classes

isFull

This method determines whether the queueis full.

Visibility
Public

Signature

virtual OMBoolean isFull ()

Return

The method returns one of the following values:

¢ FALSE—Thequeueisnot full.

¢ TRUE—The queueisfull.

pend

This method blocks the thread making the call until there is a message in the queue. A reader
generally waits until the queue contains a message that it can read.

Visibility
Public
Signature

virtual void pend()

120

Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

put
This method adds a message to the end of the message queue.

Visibility
Public
Signature

virtual OMBoolean put (void* m, OMBoolean fromISR = FALSE)
= 0;

Parameters

m

The message to be added to the queue.

fromISR

A Boolean value that specifies whether the message being added was generated from an
interrupt service routine (ISR). The default value is FALSE.

Return
The method returns one of the following Boolean values:

¢ TRUE—The method successfully added the message to the queue.
¢ FALSE—The method was unsuccessful.

Rational Rhapsody 121

The OSAL Classes

setOwnerProcess

This method sets the thread that owns the message queue. This operation was added to support
the OSE environment.

Visibility
Public
Signature

virtual void setOwnerProcess (void* handle)

Parameters

handle
The handle to the owner process

122 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

OMOSMutex Class

The factory’s cr eat eOMOSMut ex method creates a mutex, which stands for mutual exclusion. A
mutex is the basic synchronization mechanism used to protect critical sections within athread.
Mutexes are used to implement protected objects.

The mutex allows one thread mutually exclusive access to a resource. Mutexes are useful when
only one thread at a time can be allowed to modify data or some other controlled resource. For
example, adding nodesto alinked list is a process that should only be allowed by one thread at a
time. By using a mutex to control the linked list, only one thread at a time can gain accessto the
list.

The Rational Rhapsody implementation of amutex is as arecursive lock mutex. This means that
the same thread can lock the mutex several timeswithout blocking itself. In other words, the mutex
isactually a counted semaphore. When implementing OMOSMut ex for the target environment, you
should implement it as arecursive lock mutex.

Mutexes can be either free or locked (they areinitialy free). When atask executesal ock
operation and finds a mutex locked, it must wait. The task is placed on the waiting queue
associated with the mutex, along with other blocked tasks, and the CPU scheduler selects another
task to execute. If thel ock operation finds the mutex free, the task places alock on the mutex and
entersitscritical section. When any task releases the mutex by calling f r ee, the first blocked task
in the waiting queue is moved to the ready queue, where it can be selected to run according to the
CPU scheduling algorithm.

The same thread can nest | ock and f r ee calls of the same mutex without indefinitely blocking
itself. Nested locking by the same thread does not block the locking thread. However, the nested
locks are counted so the proper f r ee actually releases the mutex.

Construction Summary

~OMOSMutex Destroys the OMOSMuUt ex object

Method Summary

free Releases the lock on the mutex

getOsHandle Returns the native operating system handle to the
thread

lock Locks the mutex

unlock Releases the lock on the mutex

Rational Rhapsody 123

The OSAL Classes

~OMOSMutex

This method destroys the OMOSMut ex object. You must declare the destructor explicitly, rather
than letting the compiler add it, because it must be made virtual.

Visibility
Public

Signature
virtual ~OMOSMutex ()

free

This method releases the lock, possibly causing the underlying operating system to reschedule
threads.

This method provides backward-compatibility support for non-OSE applications.
Visibility

Public
Signature

void free() = 0;

getOsHandle

This method returns the native operating system handle to the thread. This handleis used to
identify athread or to apply operating system-specific operations to a thread.

Visibility
Public
Signature

virtual void* getOsHandle() const = 0;

Return

The handle

124 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

lock
This method determines whether the mutex is free and reacts accordingly:

¢ If the mutex if free, this operation locks it and allows the calling task to enter its
critical section.

+ If the mutex is aready locked, this operation places the calling task on awaiting
gueue with other blocked tasks.

Visibility
Public

Signature
virtual void lock() = 0;

unlock

This method releases the lock, possibly causing the underlying operating system to reschedule
threads.

Visibility
Public
Signature

virtual void unlock() = 0;

Rational Rhapsody 125

The OSAL Classes

OMOSSemaphore Class

A semaphore is a synchronization device that allows alimited number of threadsin one or more
processes to access a resource. The semaphore maintains a count of the number of threads
currently accessing the resource.

Semaphores are useful in controlling access to a shared resource that can support only alimited
number of users. The current count of the semaphore is the number of additional users allowed.
When the count reaches zero, all attempts to use the resource controlled by the semaphore are
inserted into a system gqueue and wait until they either time out or the count again rises above zero.
The maximum number of users who can access the controlled resource at one time is specified at
construction time.

The Rational Rhapsody framework itself does not use semaphores. However, the
OMOSSenaphor e primitiveis provided as a service for environments that need it (such as
Windows NT and pSOSystem).

Construction Summary

~OMOSSemaphore Destroys the OMOSSenmaphor e obj ect

Method Summary

getOsHandle Returns the native operating system handle to the
thread
signal Releases a semaphore token
wait Obtains a semaphore token
~OMOSSemaphore

This method destroys the OMOSSenmaphor e object. You must declare the destructor explicitly,
rather than letting the compiler add it, because it must be made virtual.

Visibility
Public
Signature

virtual ~OMOSSemaphore ()

126 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

getOsHandle

This method returns the native operating system handle to the thread. This handleis used to
identify athread or to apply operating system-specific operations to a thread.

Visibility
Public
Signature

virtual void* getOsHandle() const = 0;

Return
The handle
signal
This method rel eases a semaphore token.
Visibility
Public
Signature

virtual void signal() = 0;

Rational Rhapsody 127

The OSAL Classes

wait
This method obtains a semaphore token.
Visibility
Public
Signature
virtual OMBoolean wait (long timeout = -1) = 0;
Parameters

timeout

The number of ticks to lock on a semaphore before timing out. The possible valuesare < 0
(wait indefinitely); O (do not wait), and > O (the number of ticks to wait). For Solaris systems,
avalue of > 0 means to wait indefinitely.

128 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

OMOSSocket Class

The OMOSSocket class represents the socket through which datais passed between Rational
Rhapsody and an instrumented application.

OMOSSocket isgenerally used for animation, but it can also be used for other connections, as
long as you provide a host name and port number. OMOSSocket represents the client side of
the connection, and assumes that somewhere over the network thereis a server listening to the
connection. You can modify the definition of the OMOSSocket classto remove the

_OM NSTRUMENT macro definition from the relevant places to provide a socket
implementation for non-instrumented configurations. In addition, you might need to modify
the definition of the SOCK_LI B macro inside the MakeFi | eCont ent property to be similar to
that for tracing and animation.

If an animation session appears to hang, it might be because the high volume of messages
passed between Rational Rhapsody and the application causesthe internal buffer of the socket
to fill up, which might cause amajor delay in communication between Rational Rhapsody and
the application. The solution to this problem isto increase the size of the socket internal buffer,
which is 8K by default. For example, in the Windows NT implementation, you can add the
following code to the Cr eat e() function for NTSocket :

int NTSocket::Create (
const char* SocketAddress /*= NULL*/,
unsigned int nSocketPort /*= 0%/)

if ((theSock = socket (AF_INET, SOCK STREAM, proto))
== INVALID SOCKET)

NOTIFY TO ERROR("Could not create socket\n");
theSock = 0;
} return 0;
int internalBufferSizes = 64 * 1024; // 64k
setsockopt (theSock, SOL_SOCKET, SO RCVBUF,
(char*) &internalBufferSizes, sizeof (int)) ;
setsockopt (theSock, SOL_SOCKET, SO _SNDBUF,
(char*) &internalBufferSizes, sizeof (int)) ;

Note: This solution has been checked for Windows NT systems only.

Rational Rhapsody 129

The OSAL Classes

Construction Summary

~OMOSSocket

Destroys the OMOSSocket object

Method Summary

Closes the socket

Creates a new socket

Receive

Receives data through the socket

Send

Sends data through the socket

~OMOSSocket

This method destroys the OMOSSocket object. You must declare the destructor explicitly,
rather than letting the compiler add it, because it must be made virtual.

Visibility
Public
Signature

virtual ~OMOSSocket ()

Close

This method closes the socket.

Visibility
Public
Signature

virtual void Close ()

130

Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

Create
This method creates a new socket.

Visibility
Public

Signature

virtual int Create (const char* SocketAddress = NULL,
unsigned int nSocketPort = 0) = 0;

Parameters

SocketAddress

The socket address. This can be set to a host name that is a character string. The default value
iSNULL.

nSocketPort

The socket port number. The default value is 0.
Return
The method returns one of the following values:

¢ 0—The operation failed.
¢ 1—The operation was successful.

Receive
This method receives data through the socket.

Visibility
Public
Signature
virtual int Receive (char* 1lpBuf, int nBuflLen) = 0;
Parameters

1pBuf
The string buffer in which datawill be stored

nBufLen

The length of the buffer

Rational Rhapsody 131

The OSAL Classes

Return
The method returns one of the following values:

¢ 0—Therewasan error.
¢ n—The number of bytes read.

Send
This method sends data through the socket.

Visibility
Public
Signature
virtual int Send (const char *1pBuf, int nBuflen) = 0;
Parameters

1pBuf
A constant string buffer that contains the data to be sent

nBufLen

The length of the buffer

Return
The method returns one of the following values:

¢ 0—Therewasan error.
¢ n—Thenumber of byteswritten.

132 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

OMOSThread Class

The OMThr ead class in the execution framework aggregates OMOSThr ead to provide the basic
threading features. The operating system factory’s cr eat eOMOSThr ead method creates araw
thread. No constructor is declared for OMOSThr ead because any C++ compiler knows how to add

aconstructor if it not defined explicitly.

OMOSThr ead has the following static constant variables, which provide default values for user-
controllable parameters: stack size, message queue size, and thread priority. Each static variable
can be initialized with constants whose values can vary depending on the operating system being

targeted, as shown in the following table.

Static Constant Variables

Initialization Constants

Def aul t St ackSi ze

SMALL_STACK or DEFAULT_STACK

Def aul t MessageQueueSi ze

MQ DEFAULT_SI ZE

Def aul t ThreadPriority

PRI ORI TY_H CGH, PRI ORI TY_NORMAL, or
PRI ORI TY_LOW

Construction Summary

~OMOSThread

Destroys the OMOSThr ead object

Method Summary

exeOnMyThread

Determines whether the method was invoked from the
same operating system thread as the one on which the
object is running

getOsHandle

Retrieves the thread’s operating system ID

getThreadEndClbk

Is a callback function that ends the current operating
system thread

resume

Resumes a suspended thread

setEndOSThreadInDtor

Determines whether destruction of the OMOSThr ead
class should kill the operating system thread associated
with the class

setPriority Sets the thread’s operating system priority
start Starts thread processing
suspend Suspends the thread

Rational Rhapsody

133

The OSAL Classes

~OMOQOSThread

This method destroys the OMOSThr ead object. You must declare the destructor explicitly,
rather than letting the compiler add it, because it must be made virtual.

Visibility
Public

Signature
virtual ~OMOSThread()

exeOnMyThread

This method determines whether the method was invoked from the same operating system
thread as the one on which the object is running.

Visibility
Public
Signature
virtual OMBoolean exeOnMyThread () ;
Return

The method returns one of the following Boolean values:

¢ TRUE—The method was invoked from the same operating system thread as the
one on which the object is running.

¢ FALSE—Thethreads are not the same.

134 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

getOsHandle
This method retrieves the thread's operating system ID. This value varies by operating system.

Visibility
Public
Signature

virtual void* getOsHandle() const = 0;

virtual void* getOsHandle (void*& osHandle) const = 0;

Parameters

oshandle

The operating system handle
Return

The operating system 1D

getThreadEndClbk
This method is a callback function that ends the current operating system thread.

Visibility
Public
Signature

virtual void getThreadEndClbk (
OMOSThreadEndCallBack * clb p, void ** argl p,
OMBoolean onExecuteThread) = 0;

Parameters

clb p

A pointer to the callback function that ends the thread. This can be either endMy Thr ead() or
endQt her Thr ead() . The function pointer is of type OMOSThr eadEndCal | Back, whichis
defined in OMOSThr ead asfollows:

typedef void (*OMOSThr eadEndCal | Back) (void *);

argl p
The argument for the callback function.

onExecuteThread

Rational Rhapsody 135

The OSAL Classes

Set thisto one of the following Boolean values:

TRUE-The object should kill its own thread.
FALSE-Another object should kill the thread.

Notes
On some operating systems, there are different calls to kill the current thread versus
killing other threads. For example, on Windows NT, you kill the current thread by
generating anew OVNTC oseHand! eEvent ; to kill another thread, you call
Ter m nat eThr ead.
The concrete operating system adapter makes sure that other threads are killed first
by providing two static thread functions:
— dtatic void endMyThread(void *);
— Implement this method to handle the case in which the object killsits own
thread.
— dtatic void endOtherThread(void *);
— Implement this method to handle the case in which another object kills the
thread.
The getThreadEndClbk operation returns the address of either of the static functions
endMyThr ead or endQ her Thr ead. The implementation of these two functions
could be different (as on Windows NT), or the same, as on pSOSystem, where both
functionscallt _restart.
resume

This method resumes a suspended thread. This method is not used in generated code—it is
used only for advanced scheduling.

Thesuspend and r esunme methods provide away of stopping and restarting a thread.
Threads usually block when waiting for a resource, such asamutex or an event flag, so both
arerarely used.

Visibility
Public
Signature

virtual void resume() = 0;

136 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

setEndOSThreadInDtor

This method determines whether destruction of the OMOSThr ead class should kill the
operating system thread associated with the class.

Visibility
Public
Signature

virtual void setEndOSThreadInDtor (OMBoolean val) = 0;

Parameters

val

Thisvalue is determined by the value of the Boolean data member endOSThr ead! nDt or,
which must be defined in the <env>Thr ead class that inherits from OMOSThr ead. The
possible values are as follows:

TRUE-The thread is ended as part of the object’s destruction process.

FALSE-The thread is not ended when the object is destroyed.
setPriority
This method sets the thread’s operating system priority.
Visibility
Public
Signature
virtual void setPriority (int pr) = 0;
Parameters

pr

The integer value of the priority. This parameter varies by operating system.

Rational Rhapsody 137

The OSAL Classes

start
This method starts thread processing. Initially, threads are suspended until st art is called.

Visibility
Public
Signature

virtual void start() = 0;

suspend

This method suspends the thread. This method is not used in generated code—it is used only
for advanced scheduling.

Visibility
Public
Signature

virtual void suspend() = 0;

138 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

OMOSTimer Class

The abstract class OMOSTi mer isabuilding block for OMTi mer Manager , which provides basic
timing services for the execution framework. In the Rational Rhapsody implementation, the timer
runs on its own thread. Therefore, the target operating system must support multi-threading.

Construction Summary

‘ ~OMOSTimer ‘ Destroys the OMOSTi mer object

Method Summary

‘ getOsHandle ‘ Retrieves the thread’s operating system ID

~OMOSTimer

This method destroys the operating system entity that the instance wraps and stops the timer.
You must declare the destructor explicitly, rather than letting the compiler add it, because it
must be made virtual.

Visibility
Public
Signature
virtual ~OMOSTimer ()
getOsHandle
This method retrieves the thread's operating system ID. This value varies by operating system.
Visibility
Public
Signature

virtual void* getOsHandle() const = 0;

Return

The operating system 1D

Rational Rhapsody 139

The OSAL Classes

OMTMMessageQueue Class

The OMTMVessageQueue class implements a message queue. It is the base class for
OVEvent Queue and OMVessageQueue. The base class OMTMvessageQueue has an
OMOSMessageQueue, caled t heQueue, as a protected data member.

Construction Summary

OMTMMessageQueue

Creates an OMTMVessageQueue object.

~OMTMMessageQueue

Destroys the OMTMVessageQueue object

Method Summary

get

Retrieves the message at the beginning of the queue

getMessagelList

Retrieves the list of messages

getOsHandle

Returns the native operating system handle to the
thread

ISEmpty Determines whether the queue is empty

pend Blocks the thread making the call until there is a
message in the queue

putVisibility Adds a message to the queue

140

Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

OMTMMessageQueue

This method is the constructor for the OMTMvessageQueue class. It allocatest heQueue, the
OMOSMessageQueue member of OMTMVessageQueue, with a given size and the ability to
grow dynamically. In addition, it initializes the following:

+ nessageQueueSi ze—If not overridden, the message queue sizeisinitialized to
the value of the static constant Def aul t MessageQueueSi ze in OMOSThr ead.

+ dynani cMessageQueue—If the default value of TRUE is not overridden, the
message queue size is dynamic rather than fixed.

Visibility
Public
Signature

OMTMMessageQueue (const long messageQueueSize =
OMOSThread: :DefaultMessageQueueSize,
OMBoolean dynamicMessageQueue = TRUE)

Parameters

messageQueueSize

Theinitial size of the queue

dynamicMessageQueue

A Boolean value that specifies whether the queue is dynamic or fixed

~OMTMMessageQueue

This method deletes memory allocated for the message queue. You must declare the destructor
explicitly, rather than letting the compiler add it, because it must be made virtual.

Visibility
Public
Signature

virtual ~OMTMMessageQueue ()

Rational Rhapsody 141

The OSAL Classes

get

This method calls the message queue's get operation to retrieve the first message in the
queue.

Visibility

Public
Signature

virtual Msg *get ()
Return

The first message in the queue

getMessageL.ist
This method calls the message queue’s get Messageli st operation to retrieve the list of
messages.

Visibility
Public
Signature
virtual void getMessageList (OMList<Msg*>& 1)
Parameters

1
Thelist of messages in the event (message) queue.

Thelistis of type OMLi st <voi d* >, a parameterized type defined in oxf\ onl i st . h that
encapsulates all the operationstypically performed on lists, such asadding itemsto thelist and
removing items from the list.

142 Frameworks and Operating Systems Reference

Rational Rhapsody Developer for C++

getOsHandle

This method calls the message queue's get OsHandl e operation to retrieve the native
operating system handle to the thread. This handle is used to identify a thread or to apply
operating system-specific operations to a thread.

Visibility
Public
Signature

virtual void* getOsHandle() const

Return
The handle

ISEmpty

This method calls the message queue'si sEnpt y operation to determine whether the queue is
empty.

Visibility
Public
Signature

virtual int isEmpty ()

Return
The method returns one of the following values:

¢ 0—The queueis not empty.
¢ 1—Thequeueisempty.

Rational Rhapsody 143

The OSAL Classes

pend

This method calls the message queue’s pend operation to block the caller until thereisa
message in the queue.

Visibility
Public
Signature
virtual void pend ()
putVisibility
Public

Description

This method calls the message queue’s put operation to add a message to the end of the
queue.

Signature

virtual OMBoolean out (Msg *m, OMBoolean fromISR = FALSE)

Parameters

m

The message to be added to the queue.

fromISR

A Boolean value that specifies whether the message being added was generated from an
interrupt service routine (1SR). The default value is FALSE.

Return
The method returns one of the following Boolean values:

¢ TRUE—The method successfully added the message to the queue.
¢ FALSE—The method was unsuccessful.

144 Frameworks and Operating Systems Reference

Rebuilding the Rational Rhapsody
Framework

When you modify your Rational Rhapsody-built application to operate in a different target
environment, you must rebuild the Rational Rhapsody framework for that target environment.
Because language objects are compiler-specific, you must rebuild these libraries—even if you
move from one Windows-based environment to another, such as Borland.

You might need to reinstall Rational Rhapsody before you rebuild the Rational Rhapsody
framework. You should reinstall Rational Rhapsody in the following situations:

+ The sourcefiles for the framework were not included in your original installation.

+ Youinstalled Rational Rhapsody for a different environment other than the new compiler
or environment you now want to target.

+ Youinstalled Rational Rhapsody before installing the new compiler or environment.

During the reinstallation, be sure to select the correct target environment. This enables Rational
Rhapsody to prepare the appropriate make (. mak) file for your target environment. Note that
reinstalling Rational Rhapsody does not erase your license file or any projects you have under the
Rational Rhapsody root directory.

This section describes how to rebuild the Rational Rhapsody framework for the different supported
adapters for Windows systems for Rational Rhapsody Developer for C and C++.

Note

Refer to the IBM Rational Rhapsody Release Notes for detailed information about the
supported environments.

Borland

To rebuild the Rational Rhapsody framework for the Borland environment, follow these steps:

1. Makesurethefile<Bor | and_di r >\ bi n\ Bcc32. cf g contains the following lines:

-I<Borland Dir>\include

-L<Borland Dir>\1lib

Rational Rhapsody 145

Rebuilding the Rational Rhapsody Framework

2. Makesurethefile<Bor | and_di r >\ bi n\ilink32. cf g containsthe following line:
-L"<Borland Dir>\1ib"
3. Set following environment variables:

set BCROOT=<Borland installs>
set PATH=%BCROOT%\Bin; $PATH%

4. Navigatetothe<Rhapsody_i nst al | >\ Shar e\ Lang<I ang> directory and execute the
following command:

make -f bcSbuild.mak
5. If you are going to webify your model, add ¥BCROOT% Bi n to your system variables.

INTEGRITY

To rebuild the Rational Rhapsody framework for the | NTEGRI TY environment (C++ only), follow
these steps:

1. Editthe<Rhapsody_i nst al | >\ Shar e\ LangCpp\ | nt egri t yBui | d. bat fileto set
theoption :target to the target BSP name. For example:

:target =nbx800

2. Passthel NTEGRI TY environment path and target BSP name as command-line parameters
tothel ntegrityBuil d. bat fileand runthisbatch file to build all the libraries for the
specified target BSP.

For example, to build libraries for mhx800, use the following command:

<Rhapsody _i nstal | >\ Shar e\ LangCpp\ I ntegrityBuil d. bat
C.\ GHS\i nt 404 nbx800

This command builds the following debug librariesfor | NTEGRI TY under the
directory <Rhapsody_i nst al | >\ Shar e\ LangCpp\ | i b:

a. IntegrityOxfMbx800.a

b. IntegrityOxflnstMbx800.a

c. IntegrityAomAnimMbx800.a

d. IntegrityOmComA pplMbx800.a
e. IntegrityAomTraceMbx800.a

f. IntegrityTomTraceMbx800.a

g. IntegrityOxfInstTraceMbx800.a

146 Frameworks and Operating Systems Reference

INTEGRITY

h. IntegrityWebComponentsMbx800.a

In addition, the build generates the following debug information files for each debug
library:

i. IntegrityOxfMbx800.dba

j. IntegrityOxflnstMbx800.dba

k. IntegrityAomAnimMbx800.dba

[. IntegrityOmComA ppl M bx800.dba

m. IntegrityAomTraceMbx800.dba

n. IntegrityTomTraceMbx800.dba

0. IntegrityOxflnstTraceMbx800.dba

p. IntegrityWebComponentsM bx800.dba

Once the libraries are built, you can compile, build, and run the Rational Rhapsody samples.

Compiling and Building a Rational Rhapsody Sample

To compile and build a Rational Rhapsody samplein thel NTEGRI TY environment, follow these
steps:

1. Start Rational Rhapsody and open the project. For example:
<Rhapsody_i nst al | >\ Sanpl es\ CppSanpl es\ Di shwasher . r py
2. Select File> Project Properties.

3. SettheCPP_CG : | NTEGRI TY: : Renpt eHost property to the IP address of the machine
on which Rational Rhapsody is running. (To get the I P address under the Windows
environment, enter the following command at the command prompt:

i pconfig

4. Set the active configuration for the sample. For example, for the Dishwasher sample, set
EXE: : Host asthe active configuration.

5. Open the Features dialog box for the active configuration and set the following values:
a. Setthelnstrumentation Mode field to Animation.
b. Setthe Environment fieldto INTEGRITY.

6. Select the Properties tab, then click the All filter.

Rational Rhapsody 147

Rebuilding the Rational Rhapsody Framework

10.

Set the CPP_CG : | NTEGRI TY: : BLDTar get property to set the target BSP. By defaullt,
thisvalueis set to nhx800. If desired, set thisto adifferent value.

You can set additional options and defines by changing the
BLDAddi ti onal Opti ons and BLDAddi t i onal Def i nes properties.

Click OK to apply your changes and dismiss the dialog box.

Select Code > Generate <configuration> to generate the code and the build file for the
active configuration.

Select Code > Build <ActiveComponent>.mod to compile and link the application
source code. Thiswill generate the following | NTEGRI TY executable files:

a. <ActiveConponent >. nod—Thisisadynamically download type of image. This
image can be downloaded on arunning kernel on the target board using the TFTP
server utility.

b. <ActiveConponent >—Thisisan Integrity Application type of image. Thisimage
must beintegrated with the kernel to form a composite image that can be downloaded
on the target using the ocdser v utility.

In these names, ActiveComponent isthe name of the component currently selected as
the active component within Rational Rhapsody.

Downloading the Image and Running the Application

To run the sample, perform all the steps described in the following sections.

Modifying the Files
Perform the following steps:

1

EdittheDef aul t . I d fileinthe <G eenDi r >\ nhx800 dsp directory asfollows:

a. Increasethe. heap sectionto 1Mb (0x100000).

b. Increasethe. downl oad sectionto 1.5Mb (0x180000).

Editthel ntegrity. | dfilein<G eenDi r > directory to increase the . heap section to

256K (0x40000). Thisisused for application build. You can check it in the. map file of
the application.

Building the Kernel
To build the kernel, follow these steps:

1. From the Windows Start menu, invoke the ADAMULTI IDE.

148

Frameworks and Operating Systems Reference

INTEGRITY

2. Select File> Open Project in Builder, navigate to the mbx800 BSP directory under your
Green Hillsinstalation (for example, <Gr eenDi r >\ mhx800), select the project
def aul t. bl d, and openiit.

3. Navigateto the project Ker nel . bl d and double-click oniit. You will seea
gl obal _t abl e. c file. You must modify thisfile according to your board specifications.
Make the following changes:

a. Uncomment the following statement:
#def i ne HARD_ CODE_NETWORK CONFI GURATI ON

b. Define the ethernet address for your board. For example:

#def i ne ETHERADDR 0x00, 0x01, OxAF, 0x01, 0x10, O0xCC

c. Definethe IP address of the board. For example:

#define | P1 194
#define | P2 90
#define | P3 28
#define 1 P4 151

d. Definethe gateway for the board. For example:
#define G 194
#define GA2 90
#define GAB 28
#define GM 1
e. Set the netmask. For example:
#defi ne NML 255
#defi ne NM2 255
#define NMB 252
#define NW 0O

f. Make surethe target board using TCP/IP is on the same subnet as any system with
which it communicates.

4. Seect Project > FileOptionsfor Ker nel . bl d. Set the libraries option as follows:
a. Removethel og library.
b. Addthet cpi p library.

5. Select Build > Rebuild all. This command rebuilds your kernel.

Rational Rhapsody 149

Rebuilding the Rational Rhapsody Framework

Downloading the Kernel Dynamically

Because two different executable files are created during code generation, there are two waysto
download the kernel on the target board. The following sections describe both methods.

To download the kernel on the target board, follow these steps:

1. Makesurethevariableon_board_ram si ze inthefile
<Gr eenDi r >\ nhx800\ mbx800. ocd is 16 (for the MBX860 board).

2. Select Target > Connect to Target. The Connection Chooser command window opens.
3. Enter the following command, then click OK:

ocdserv | ptl ppc800 -s <G eenDir >\ mbx800\ nbx800. ocd

Select Debug > Debug kernel to open the Debug window.

Click the GO toolbar button to download the kernel on to the board and run it.

Invoke another instance of ADAMULTI IDE.

Select Target > Connect to Target to open the Connection Chooser command window.

O N o g »

Enter the following command, then click OK:

rtserv -port udp@host name>

In this command, hostname is the | P address of the target board. For example:

rtserv -port udp@94. 90. 28. 151

This command opens the Task window. You can see some kernel tasks running in the
kernel space on the Task window. Select Target > Show Tar get windowsto see |O
and target windows.

9. From the Windows Start menu, invoke the TFTP server.

10. Set the base directory in the TFTP server window to the directory where the images are
generated (for example, <Rhapsody_i nst al | >\ Sanpl es\ CppSanpl es).

11. Inthe rtserv Task window, select Target > L oad Module.

12. Navigate to the path where the dynamically download image (* . nod) was generated and
select load.

Ensure that the TFTP server isrunning or the download process will be very slow.
You can see the download status on the rtserv target window. Once the image has
been successfully downloaded, the Initial Task will be visible in the rtserv Task
window in the virtual address space.

150 Frameworks and Operating Systems Reference

INTEGRITY

Integrating INTEGRITY Application Images with the Kernel
To integrate the | NTEGRI TY application image with the kernel, follow these steps:

1. Open an application command window and change directory to the directory where the
| NTEGRI TY application image was created.

2. Enter the following command:
C.>\...<path> <GreenDir>\intex -dbo
- lang_7=<execut abl e nane>
- ker nel =<Target BSP pat h>\ ker nel
-target=<Target BSP Pat h>\defaul t.bsp Qut putFi | eNane
In this command:
a. <pat h> = The path to the application image
b. <executabl e name> = Host
C. <Target BSP Path> = <GreenDir>\ nhbx800
d. CQutputFileNane = Di shwasher

For example:

C:\..\Di shwasher\ EXE <G eenDir>\intex -dbo

-l ang_7=Di shwasher -

ker nel =<Gr eenDi r >\ nbhx800\ ker nel

-target =<G eenDbDi r >\ ntbx800\ def aul t . bsp Di shwasher

3. Invokethe ADAMULTI IDE.
4. Select Remote > Connect to Target to open the Remote command window.

Enter the following command:

ocdserv | ptl ppc800 -s <G eenDir >\ nbx800\ nbx800. ocd

The execution of this command opens two windows—the Target window and the
IN/OUT window.

5. Select Debug > Debug Other and navigate to the path where your Integrity Application
image was created, then click Debug. This opens the debug window.

6. Click on the toolbar button GO to start downloading your composite image of
"Kernel+Application" on the board.

7. Invoke another instance of the ADAMULTI IDE.

Rational Rhapsody 151

Rebuilding the Rational Rhapsody Framework

8. Select Remote > Connect to Target to open the Remote command window.
9. Enter the following command:
rtserv -port udp@host name>

In this command, hostname is the | P address of the target board. For example:

rtserv -port udp@94. 90. 28. 151

The execution of this command invokes three windows—the rtserv Target window,
IN/OUT window, and Task window. In the Task window, you can view the kernel
space tasks and the virtual address space task (Initial).

10. Double-click on the Initial Task to bring up its debug window. You can see the debug
arrow pointing at the main function for the application. Ensure that the same applicationis
opened in Rational Rhapsody.

152 Frameworks and Operating Systems Reference

INTEGRITY

Animating the Image
To run the application, follow these steps:

1

Double-click on the Initial Task to bring up its debug window. You can see the debug
arrow pointing to the application’s main function. Ensure that the same application is
open in Rational Rhapsody.

To execute this application, click the toolbar button GO. You should be able to see the
animation toolbar come up in Rational Rhapsody. You can generate eventsin Rational
Rhapsody using the animation toolbar. If there is console output, it is displayed on the
rtserv IN/OUT window; animation is displayed in the Rational Rhapsody window.

After the execution is complete, quit from animation.

The task window shows that the Initial Task and its tcpip client are still alive; these tasks
must be killed manually. Close the Initial Task debug window; in the message window,
select QuitandKillProcessto kill your initial task.

In the Task window, in the kernel space, double-click the ClientO0OX (X=1..) task to
display the debug window of this task. Close the debug window and select
QuitandKillProcessto kill the client task.

In the rtserv Task window, select Target > Disconnect from Tar get to close your rtserv
Session.

To unload the composite image from the target board, go to the first instance of the
ADAMULTI IDE that was opened. Select Remote > Disconnect from Target to close your
ocdserv session.

Close the Debug window of the ocdserv.

Rational Rhapsody 153

Rebuilding the Rational Rhapsody Framework

Linux

Rationa Rhapsody Developer for C++ provides support for the Linux operating system. The
following sections describe how to build the Linux libraries, and how to generate Linux code using
Rational Rhapsody.

Building the Linux Libraries

You build the Linux libraries on the target machine. Copy thel i nuxshare. t ar fileinstalledin
the Shar e\ LangCpp directory on the host to the Linux machine.

To build the libraries, follow these steps:
1. Change directory to Shar e/ LangCpp.
2. Build thelibraries using the following command:
gmake —f i nuxbuil d. mak

3. Veify that the following library files were created in the directory
Shar e/ LangCpp/ | i b:

a. linuxaomanima
b. linuxaontrace.a
C. linuxontoappl.a
d. linuxoxf.a

e. linuxoxfinst.a
f. linuxtomtrace.a

154 Frameworks and Operating Systems Reference

Linux

Creating and Running Linux Applications

You compile, link, and run your Linux application on the Linux machine.

Perform the following steps:

1. Createthe Rational Rhapsody project on the host, and select the Linux environment on the
configuration’s Settings tab.

2. Transfer the generated directory with the sources, headers, and makefiles from the host to
the Linux machine (for example, by using f t p).

3. Onthe Linux machine, edit the makefile (*. mak) to change the following setting:
OVROOT=[LangCPP_Di r]
In this syntax, [LangCPP_Dir] isthe path to the Shar e/ LangCpp directory.
4. To compile and link the application, enter the following command:
gmake -f xxx.mak
In this command, xxx.mak is the name of the generated makefile.
5. Anexecutableis created in the current directory. When you run the executable on the

target, the Rational Rhapsody animation toolbar opens on the host (for applications using
instrumentation).

Rational Rhapsody 155

Rebuilding the Rational Rhapsody Framework

Multiwin32

To rebuild the Rational Rhapsody OXF for the Mul t i W n32 environment (C++ only), follow
these steps:

1. Open an application command prompt window.

2. Change directory to $OVROOT\ LangCpp.

3. Assuming that the Green Hills home directory is C: \ GHS, enter the following commands:

> Mul ti Wn32Bui | d. bat C:\ GHS\ nat 35 cl ean
> Mul ti Wn32Bui | d. bat C:\ GHS\ nat 35

You must perform a clean before the build to delete previously generated libraries
and debug information. Otherwise, the MULTI linker generates errors when you
build the Rational Rhapsody generated application.

Stepping Through the Generated Application Using Multiwin32

To step through the generated application, follow these steps:

1. Onthe Settings tab of the features dialog box for the configuration, set the Build Set field
to one of the following values:

a. Debug—Turns on the debug information. This option adds the following line to the
_program bl dfile
. defi nes=_DEBUG | i ne
b.

DebugNoExp—Turns on the debug and exceptionsinformation. This option adds the
following linesto the _pr ogr am bl d file:

: def i nes=_DEBUG
. defi nes=HAS_NO EXP

Thisisthe default value.

c. Release—No debug information.

ReleaseNoExp—No debug or exceptions information. This option adds the
following lineto the _pr ogr am bl d file:

. defi nes=HAS_NO EXP

In Rational Rhapsody, select Code > Gener ate/M ake/Run.

156 Frameworks and Operating Systems Reference

Multiwin32

3. InMULTI, start debugging by selecting Debug > Debug Other Executable and select the
Rationa Rhapsody generated application’s .exe file.

Rational Rhapsody 157

Rebuilding the Rational Rhapsody Framework

Stepping Through the OXF Using MULTI

The OXF libraries provided with the Mul t i W n32 environment do not include debug information.
To step through the OXF source code using MULTI, you must rebuild the OXF with debug
information enabled.

Perform the following steps:

1. Addthefollowing line to the $OMROOT\ LangCpp\ Mul ti W n32Bui | d. bl d filejust
below the" : defi nes=OM STL" line:

: def i nes=_DEBUG

2. Follow the steps described in Stepping Through the Generated Application Using
Multiwin32 to rebuild the framework libraries and step through the source code.

158 Frameworks and Operating Systems Reference

OSE

OSE

This section describes how to rebuild the Rational Rhapsody OXF for the OSE Soft Kernel
(GseSFK) for C++ environments only.

Rebuilding the Framework

To rebuild the OXF framework for the Gse SFK environment, follow these steps:
1. Open the command prompt.
2. Navigatetothe <Rhapsody i nstal | >\ Shar e\ LangCpp directory.
3. Cdlvcvars32.
4, Enter the following make command:
nmeke osesf kbuil d. mak

To rebuild specific framework libraries only, see Using Command-Line Attributes and Flags.

Using Command-Line Attributes and Flags

For both OSE environments, you can rebuild only part of the framework using the attribute
TARGETS, where the target is one of the following values:
+ oxflibs—Buildsthe oxf and oxfi nst librariesonly
¢ aonl i bs—Buildsthe aont r ace and aomani mlibraries only
¢ onctonl i b—Buildsthe ontomlibrary only
¢ tonli b—Buildsthet omlibrary only
For example:

dmake —f oseppcbuil d. mak TARGETS=oxfl i bs

To build the framework with debug information, use the flag USE_PDB=TRUE. For
example:

nmake osesfkbuil d. mak USE_PDB=TRUE

Rational Rhapsody 159

Rebuilding the Rational Rhapsody Framework

Editing the Batch Files

Before you can execute the model, you must edit the batch files, as shown here.

Add thefollowing line to the file<Rhapsody i nst al | >\ Shar e\ et c\ osesf kRun. bat :

set LM LI CENSE FI LE=<CSE | i cense fil e>;

For example:

set LM LI CENSE_FI LE=744@anana;

160 Frameworks and Operating Systems Reference

QNX

QNX

To rebuild the Rational Rhapsody framework for the QNX environment, follow these steps:
1. Open an application command prompt window.

2. Set the following environment variables:

set QNXROOT=<your_ QNX install dirs>

set QNX_ TARGET=%QNXROOT%/target/qnxé

set QNX HOST=%QNXROOT% /host/win32/x86

set QCC_CONF_PATH=%QNX HOST$/etc/qgcc

set LD _LIBRARY PATH=%QNXROOT%/target/qnx6/lib
set PATH=%QNXROOT%/host/win32/x86/usr/bin; $PATHS

3. (as in gnxcwrake. bat) Navigate to the directory
<Rhapsody_i nst al | >\ Shar e\ LangCpp and execute one of the following commands:

make -f gnxcwbuil d. mak CPU=ppc CPU_SUFFI X=be PATH_ SEP=\\
(r?\rake -f gnxcwbui | d. mak CPU=x86 PATH SEP=\\
In the first command (for ppc), CPU_SUFFI X can be one of the following values:
a. be—Big-endian
b. | e—Little-endian

In the second command (for x86), do not include the CPU_SUFFI X in the command.

If desired, you can specify the TARGETS attribute, which enables you to build only
part of the framework. The possible targets are as follows:

c. oxflibs

d. aomibs

e onctomib

f. tomib

g. webconponentslib

For example:

make -f gnxcwbuil d. mak CPU=ppc CPU_SUFFI X=be PATH_ SEP=\\
TARGETS=0xf | i bs

Rational Rhapsody 161

Rebuilding the Rational Rhapsody Framework

4. To execute the model, Generate and M ake the model in Rational Rhapsody, then upload
or transfer your executable to the QNX machine using the Momentics Eclipse-based IDE

or by using f t p, and executing the application on the target machine (suitable for x86).
The following sections describe this step in detail.

Using Momentics

To upload your executable using Momentics, follow these steps:
1. Open Momentics and select File > Open.

2. Choose the new Bourne executable. Thiswill create the Momentics project for your
model.

3. For the target settings:
a. Setthe QNX Linker panel to carry thetag - st atii c.
b. Set Connection settings > Host Name to your target machine name.
4. On thetarget machine, run the following process:
pdebug 10000

5. Execute the model in Momentics.
Using ftp
To transfer your executable using f t p, follow these steps:
1. Upload the executable to the target machine using your favoritef t p client.
2. Change permissions for the executable using the following command:
chnmod +x EXE

3. Execute your model using the following command:

.| EXE

162 Frameworks and Operating Systems Reference

QNX

Message Queue Implementation

The default style is a proprietary-style queue. To use POS| X-style queues, follow these steps:
1. Inthe makefile, add the flag OM_PCSI X_QUEUES to ADDED CPP_FLAGS.

2. Rebuild the OXF librariesin the framework, as described in Building the Framework
Libraries.

Rational Rhapsody 163

Rebuilding the Rational Rhapsody Framework

VxXWorks

To rebuild the Rational Rhapsody framework for the VxWor ks environment, follow these steps:
1. Call thefile<Tor nado_di r >\ host\ x86-wi n32\ bi n\ t or Var s. bat . For example:
D: \ Tor nado\ host \ x86-wi n32\ bi n\t or Var s. bat

2. Navigatetothe<Rhapsody_i nst al | >\ Shar e\ Lang<| ang> directory and execute the
following command:

make all -f vxbuild.mak CPU=<cputype>

PATH SEP=<path separator>

Note: Set the patu_sep switch, for example, use\\ for NT.
3. Change the CPU environment variable to the desired CPU. The CPU switch should not be
preceded by -D. The CPU can be set, for example, to 180386, 180486 (the default),
PPC860, or MC6800.

The makefile vxbuild.mak rebuilds all of the framework libraries.

164 Frameworks and Operating Systems Reference

Integrated Development Environment (IDE)

Integrated Development Environment (IDE)

The integrated development environment (IDE) interfaceisa DLL that exports a set of C
definitions, structures, and functions. The DLL header is supplied as part of Rational Rhapsody
installation (in <r oot >/ Shar e/ DLLs/ i deabs. h). Because thisfile defines an abstract IDE for
Rational Rhapsody, you can use it to create your own DLL to interface to other IDEs.

Defines

Defines represent the IDE interface state. The defines are as follows:

¢ OM_| DE_CONNECTED—The DLL isconnected to the IDE.

¢ OM. | DE_EXEC DOWNLOADED—The image was downloaded to the target.
¢ OM | DE_EXEC_RUNNI NG—Theimage isrunning on the target.

¢ OM | DE_EXEC BREAK—Theimageisin abreakpoint.

Note
If the IDE is not connected, the state is 0.

Structures

The OM DECal | backs structure stores a set of callback functions to enable the IDE to call
Rational Rhapsody. The following callbacks are called by the IDE interface:

¢ Connectiond osedNot i fy notifies Rational Rhapsody when the connection to the IDE
is broken

+ DoAni mat i onCommand makes Rational Rhapsody perform user animation commands
(for example, Go Step)

+ DbgBr eakpoi nt Not i fy notifies Rational Rhapsody of a breakpoint in either animation
or the IDE debugger

+ DbgContinueNot i fy notifies Rational Rhapsody that the user continued execution on
the IDE debugger

¢ Enabl eVCRBut t ons forces control to pass to the user (in animation)
Functions
The IDE functions called by Rational Rhapsody are as follows:

void OMIDESetCallbacks(/*in*/struct OM | DECallbacks*);
Sets the callbacks for the IDE interface.

Rational Rhapsody 165

Rebuilding the Rational Rhapsody Framework

int OMIDEConnect(/*inout*/char* InOutConnectParam);
Connectsto the debugger IDE.

Thel nQut Connect Par amparameter is a string that contains the information needed to
establish the connection.

int OM | DEDisconnect();
Closes the connection with the IDE.

int OMIDEDownload(/*in*/char* fileName);
Instructs the IDE to download the specified file to the target.

int OMIDEUnload();

Instructs the IDE to unload the image.

int OMIDERun(/*in*/char* entryPoint,/*in*/char* language);
Instructs the IDE to run the image.

The parameters are as follows:

a. entryPoi nt —Theentry point. This parameter is set by Rational Rhapsody based on
the value of the <l ang>_CG : <Envi r onnment >: : Ent r yPoi nt property/

b. | anguage—Specifiesthe application language, such as C or C++.
int OMIDEStop();

Instructs the I DE to stop execution of the image on the target.

int OM I DEENd();

I's equivalent to sequence of call of OM DESt op() , OM DEUnI oad() , and
OM DEDi sconnect () .

int OMIDEGetSatus();
Returns the IDE interface state. See Defines for the list of possible states.

int OMIDEContinue();
Instructs the IDE to continue execution, after the image reaches a breakpoint.

166 Frameworks and Operating Systems Reference

Makefiles

The process of building an adapter for anew RTOS is not complete until you define the makefiles
that are used to build applications in the new environment. To do this, follow these steps:

1. Defineanmake batchfile.
2. Runthe batch file used to build and run applications.

3. Redefine the properties that include such information as compile and link switches needed
to interact with the application makefile. These properties provide some of the content for
the makefile.

4, Specify atemplate for the generated makefile by redefining the MakeFi | eCont ent
property (under <l ang>_CG : <Envi r onnent >) for the new environment.

This section describes these steps in detail.

Creating a Make.bat File

Create abatch file that sets the environment and then calls the generated makefile for the
application. Namethe batch file <env>nmake. bat and save it to the $OVROOT\ et ¢ directory. This
batch file can be used to build both Rhapsody applications and the framework itself (except for
Solaris).

Running the Batch File

In some cases, you will need an <env>Run. bat in addition to the make batch file (for example,
thereisaj dkr un. bat for Java). Thisfileisused only to run the application, and is saved to the
$OVROOT\ et c directory. The | nvokeExecut abl e property, one of the code generation
properties to be redefined for the new environment, might execute the run batch file. For example,
thel nvokeExecut abl e property for the OSE SFK environment callsthe osesf kRun. bat file,
which setsthe LM LI CENSE_FI LE variable for the OSE environment and then calls an executable
file. In this case, you can use the osesf kRun. bat fileto invoke the osesf knmake. bat fileto
build applications for OSE.

Rational Rhapsody 167

Makefiles

Redefining Makefile-Related Properties

The most crucial code generation properties to modify are the ones that interact with the makefile
to build and link the framework libraries for the new environment. These properties are found in
the specific environment metaclass under the <I ang>_CG subject for a given language. For
example, the code generation propertiesfor VxWorksin C++ arelisted under CPP_CG: : VxWor ks.

Thefollowing table lists the properties help build and link code in the new RTOS.

Property Description

Conpi | eSwi t ches Specifies the compiler the switches to be used for
any type of build.

CPPConpi | eComand Specifies the environment-specific compilation
command used in the makefile. This command is
referenced in the makefile via the

OMCPPConpi | eConmmandSet variable.

If you modified the generated dependencies
section of the MakeFi | eCont ent property to
generate a new . obj file every time you compile,
you need to change the CPPConpi | eComrand
property as follows:

if exist $OVFi | ethj Path del
$OVFi | eObj Pat h
$(CPP) $OVFi | eCPPConpi | eSwi t ches /
Fo\ " $OVFi | eoj Pat h\ "
\"$OWFi | el npPat h\ " "

CPPConpi | eDebug Modifies the makefile compile command with
switches for building a Debug version of a
component.

CPPConpi | eRel ease Madifies the makefile compile command with
switches for building a Release version of a
component.

DependencyRul e Specifies how file dependencies for a configuration
are generated in the makefile.

Fi | eDependenci es Specifies which framework source files to include
when building model elements. The file inclusions
are generated in the makefile.

Li nkDebug Specifies the special link switches used to link in
Debug mode.

Li nkRel ease Specifies the special link switches used to link in
Release mode.

Li nkSwi t ches Specifies the standard link switches used to link in
any mode.

bj A eanConmand Specifies the environment-specific command used
to clean the object files generated by a previous
build.

168 Frameworks and Operating Systems Reference

Redefining the MakeFileContent Property

Redefining the MakeFileContent Property

Finally, you must specify atemplate for the generated makefile by redefining the

MakeFi | eCont ent property (under <l ang>_CG : <Envi r onnment >) for the new environment.
The code generator uses the template defined in this property to generate the makefile used to
build a specific model.

A makefile has the following sections:

*

*

*

*

*

*

Target type
Compilation flags
Commands definitions
Generated macros
Predefined macros
Generated dependencies
Linking instructions

The following sections describe the contents of the makefile in detail.

Rational Rhapsody 169

Makefiles

Target Type

The target type section of the makefile contains the macros needed to build either a Debug or
Release version of a configuration.

For example, the default content of the target type section of a C++ makefile for the Microsoft
environment is as follows:

HEHHHHHHHARAR Target type (Debug/Release) ######H#####H##H
HHHHH R

CPPCompileDebug=$OMCPPCompileDebug
CPPCompileRelease=$OMCPPCompileRelease
LinkDebug=$0OMLinkDebug
LinkRelease=$0MLinkRelease
BuildSet=$OMBuildSet
SUBSYSTEM=S$0MSubSystem

COM=$0OMCOM
RPFrameWorkD11=$OMRPFrameWorkD11

ConfigurationCPPCompileSwitches=
SOMReusableStatechartSwitches
$OMConfigurationCPPCompile Switches

ITF "S$ (RPFrameWorkDll)" == "True"
ConfigurationCPPCompileSwitches=
$ (ConfigurationCPPCompileSwitches) /D "FRAMEWORK DLL"

!ENDIF

ITF "$(COM)" == "True"
SUBSYSTEM=/SUBSYSTEM: windows
!ENDIF

Compilation Flags

The compilation flags section of the makefile contains the default compilation flags stored in the
Conpi | eSwi t ches property.

For example, the default content of the compilation flags section of a C++ makefile for the
Microsoft environment is as follows:

HEHHFHEHHHHAHEHHEHE Compilation flags ###HH#FHEHHHHFHEHHHH
HHHHHEFHHEFHH RS H SRS S R H
INCLUDE QUALIFIER=/T

LIB_PREFIX=MS

170

Frameworks and Operating Systems Reference

Redefining the MakeFileContent Property

Commands Definitions

The commands definition section of the makefile specifies programs to execute from the makefile.

For example, the default commands definition section of a C++ makefile for the Microsoft
environment is as follows:

HHHH#HHHFRAHH Commands definition H#HH#HHHHHHHFHHHHHHE

HAEHHHHAHAH S HEHA SRS RS S

RMDIR = rmdir

LINK CMD=link.exe

LIB_FLAGS=$OMConfigurationLinkSwitches

LINK FLAGS=$OMConfigurationLinkSwitches $(SUBSYSTEM) /
MACHINE:I386

Rational Rhapsody 171

Makefiles

Generated Macros

The generated macros section of the makefile contains avariable that expands to the Rhapsody-
generated macros in the makefile. For example:

HHHHHHHHH B H#HE Generated macros #HHHHHHHHHBFHHERH
HEHHHHEHSHH RS HH S R
SOMContextMacros

OBJ_DIR=$OMObjectsDir

ITF "$(OBJ_DIR)"!="n

CREATE_OBJ DIR=if not exist $(OBJ DIR) mkdir $(OBJ DIR)
CLEAN OBJ DIR= if exist $(OBJ_DIR) $(RMDIR) $(OBJ DIR)
|ELSE

CREATE_OBJ DIR=

CLEAN OBJ DIR=

|ENDIF

The $OMCont ext Macr os keyword expands several macrosin the makefile. Each makefile macro
has its own keyword. You can use these keywords separately to customize the makefile.

The $OMCont ext Macr os variable enables you to modify target-specific variables. Replace the
$OMCont ext Macr os lineinthe MakeFi | eCont ent property with the following:

FLAGSFILE=$OMFlagsFile
RULESFILE=SOMRulesFile
OMROOT=$OMROOT

CPP_EXT=$OMImplExt

H_ EXT=$OMSpecExt
OBJ_EXT=$OMObjExt

EXE EXT=$OMExeExt

LIB EXT=$OMLibExt
INSTRUMENTATION=$OMInstrumentation
TIME MODEL=$OMTimeModel

TARGET TYPE=$OMTargetType

TARGET NAME=$OMTargetName
$SOMAllDependencyRule

TARGET MAIN=$OMTargetMain
LIBS=$OMLibs

INCLUDE PATH=$OMIncludePath
ADDITIONAL OBJS=$OMAdditionalObjs
OBJS= $OMObjs

172 Frameworks and Operating Systems Reference

Redefining the MakeFileContent Property

Predefined Macros

The predefined macros section of the makefile contains other macros than the Rhapsody-generated
macros specified in the generated macros section.

For example, part of the default predefined macros section of a C++ makefile for the Microsoft
environment is as follows:

HAH#HH#HH#HHAH#HHE Predefined macros #H##H#HHFHHFHHHH
HAHHSHEH S HEH S S S

$ (OBJS) : $(INST_LIBS) $(OXF_LIBS)
LIB_POSTFIX=

ITF "$(BuildSet) "=="Release"
LIB_POSTFIX=R

ENDIF

ITF ”$(TARGET_TYPE)" == "Executable"

LinkDebug=$ (LinkDebug) /DEBUG
LinkRelease=$ (LinkRelease) /OPT:NOREF

|ELSEIF "$(TARGET TYPE)" == "Library"
LinkDebug=$ (LinkDebug) /DEBUGTYPE:CV

!ENDIF

Generated Dependencies

The generated dependencies section of the makefile contains a variable that expands to Rhapsody-
generated dependencies and compilation instructions.

For example, the generated dependencies section of a C++ makefile for the Microsoft environment
isasfollows:

HHHHFHEHHHHAR Cenerated dependencies ##H##HAHHHFHFHHHHH

HHHHHHHHH A HH A A R R R R
$SOMContextDependencies

SOMFileObjPath : $OMMainImplementationFile $(OBJS)
$(CPP) $(ConfigurationCPPCompileSwitches) /
Fo"$SOMFileObjPath" $OMMainImplementationFile

Rational Rhapsody 173

Makefiles

Makefile Linking Instructions

The linking instructions section of the makefile contains the predefined linking instructions.

For example, the default linking instructions section of a C++ makefile for the Microsoft
environment is as follows:

HEHHFHAEHHHHEHE Linking instructions ###HH##HEHHHHEHEHHR

HAEHHHHAHAH SRS SRS RS R

$ (TARGET NAME) $ (EXE_EXT) : $(OBJS) $(ADDITIONAL OBJS) S$OMFileObjPath
SOMMakefileName $OMModelLibs

@echo Linking $(TARGET NAME)$ (EXE_EXT)

$ (LINK_CMD) SOMFileObjPath $(OBJS) $(ADDITIONAL OBJS) \

$ (LIBS)

$ (INST LIBS) \

$ (OXF_LIBS) \

$(SOCK_LIB) \

$ (LINK_FLAGS) /out:$(TARGET NAME) $ (EXE_EXT)

$ (TARGET NAME) $ (LIB_EXT) : $(OBJS) $(ADDITIONAL OBJS) $OMMakefileName

@echo Building library S$@

$(LIB_CMD) $(LIB FLAGS) /out:$(TARGET NAME)$(LIB_EXT) $(OBJS)
$ (ADDITIONAL OBJS)

clean:

@echo Cleanup

SOMCleanOBJS

if exist $OMFileObjPath erase $OMFileObjPath

if exist *$(OBJ_EXT) erase *$(OBJ_EXT)

if exist $(TARGET NAME) .pdb erase $(TARGET NAME) .pdb

if exist $(TARGET NAME) $ (LIB_EXT) erase $(TARGET NAME) $ (LIB_EXT)
if exist $(TARGET NAME) .ilk erase $(TARGET NAME) .ilk

if exist $(TARGET NAME) $ (EXE EXT) erase $(TARGET NAME) $ (EXE_EXT)

$ (CLEAN_OBJ_DIR)

174

Frameworks and Operating Systems Reference

Redefining the MakeFileContent Property

Java Users

To generate Java JAR files, invoke thej ar command from the makefile, using the
MakeFi | eCont ent property. You can specify the manifest file as an external file with a text
element in it. You can add additional files to the model for completeness.

Thereis no specialized support for RMI in Rhapsody. Call the JDK and invoke the relevant tools
manually, or via the generated makefile (change the MakeFi | eCont ent property).

Rational Rhapsody 175

Makefiles

176 Frameworks and Operating Systems Reference

Active Behavior Framework

The active behavioral framework or Behavioral package consists of aset of collaborative classes
that form the fundamental architecture of an object-oriented, reactive, multi-threaded system.

The OMReactive, OMThread, OMProtected, OMEvent, OMTimeout, and OMTimerManager
classes are the base classes from which concrete model classes are derived. The code generator
automatically derives model classes from framework classes based on their application classes.

Active and Reactive Classes

An active abject is one that runs on its own task (thread), with a message queue available on the
task object. A reactive object is one that has a mechanism for consuming events and triggered
operations. In Rhapsody, an object is reactive if it fulfills any of the following conditions:

¢ Hasastatechart
+ Receives events and triggered operations
¢ Isacomposite

Using Rhapsody, you can:

¢ Create active classes and objects that are not reactive.

¢ Create and control the behavior of reactive classes or objects with or without a statechart.

Active Classes that are Not Reactive
To create an active class that is not reactive, do the following:

1. Create aclassand set its concurrency to active. If the classis active but not reactive, you
must call start () to activate the event loop.

2. Overridethe oMThread: : execute method, which implements the event loop. If you
override aframework method, do not animate the overridden method.

Rational Rhapsody 177

Active Behavior Framework

Creating a Reactive Class that Consumes Events
To create areactive class that consumes events without a statechart:

1. Createaclass.
2. Add an event reception or atriggered operation to the class.

3. Overridethe oMreactive: :consumeEvent method, which implements the event
consumption algorithm.

For more information on the consumeEvent method, see consumeEvent.
Creating a Statechart as Documentation
You can create statecharts as behavioral documentation only—uwithout generating code for them.
To create a statechart for documentation only:
1. Createaclassand giveit astatechart.
2. Setthe Implementstatechart property for the class (under cc: : c1ass) to cleared.
Modifying a Class Event Consumption
To add functionality to a class event consumption:
1. Createaclassand giveit astatechart.

2. Overridethe oMreactive: :consumeEvent operation to implement the additional
functionality.

178 Frameworks and Operating Systems Reference

OMReactive Class

OMReactive Class

Essentiadly, areactive classis one that reactsto events; that is, it is an event consumer. A reactive
classis represented in the execution framework by the oMreactive class (defined in
omreactive.h), from which every generated reactive classinherits by default. Every reactive class
is associated with an active class, from which its events are dispatched.

The Active and Reactive Class illustration shows the relationships between active and reactive
class-related elementsin the execution framework. In the diagram, framework classes are shown at
the top, whereas representative user classes are shown at the bottom.

Each class can have events and operations defined on it. Events are significant occurrences |ocated
in time and space. In the context of statecharts and activity diagrams, events can trigger transitions
between states. For detailed information on signal events, triggered operations, and timeout events,

See Event Handling.

An instance of areactive class accepts agiven event viathe gen operation, which queues the event
in its associated manager using the gueueEvent method. The manager will later inject it to the
instance for consumption by calling the takeEvent method. In the general case, the reactive class
and its manager are distinct objects. However, in many cases, they are one and the same.

The processing of eventsis normally defined by a statechart or activity diagram, but you can
define an arbitrary event-consumption behavior for areactive class by overriding the
consumeEvent method.

Rational Rhapsody 179

Active Behavior Framework

Active and Reactive Class

myThread
OMThread OMReactive
1
o Felation myThread o
UserApp \ |
serActiveClass UserActiveReactiveClass a UserReactiveClass EI
<<actives: <<active_reactives: <<reactives:
N Fa F
N ’ N ’
N / N i
N 4 \ i
N / \ /
LY r
{Responsible for {responsible for event
event dispatching} consumption}

For more information on the OVReact i ve class, see OMReactive Class.

180

Frameworks and Operating Systems Reference

OMThread Class

OMThread Class

An active object is defined in the UML as “an object that owns athread and can initiate control
activity.” The oMmThread class (defined in omthread. h) isthe base classin the framework for every
active class. User active classes inherit from omthread, which has the following responsibilities:
¢ Runsan event loop on its own thread
¢ Digpatches events to client reactive classes
For more information, see Active and Reactive Classes and Event Handling.

A thread is represented by omosThread, which wraps an operating system thread.

oMThread contains code that manages an event queue. It executes an infinite event dispatching
loop, taking events from the queue and injecting them to the target instances. Every user class that
inherits from oMmThread acquires this default behavior.

Active classes encapsul ate the notion of event-driven tasks; that is, an active classis atask that
performs event management. It is not necessarily reactive, but every reactive object needs an
active object to manage (queue and dispatch) itsincoming events.

You can customize oMmThread SO it uses a different event dispatching mechanism viainheritance.
For example, you could define a class myThread that uses two event queues instead of one.

my Thr ead would inherit from oMmThread, overriding the execute, gueueEvent, cancelEvent, and

cancelEvents methods. You can then tune the code generator to use myThread instead of

OMThr ead during code generation, meaning that classes marked “active” automatically inherits
from myactive instead of oMThread.

OMMainThread Class

The oMMainThread class (defined in omthread.n) isaspecia case of oMThread—it defines the
default active class for an application. oMMainThread inherits from oMmThread and is a singleton—
only oneinstanceis created.

OMDelay Class

The ovmpelay class (defined in omthread.h) isused to delay acalling thread. A timeout is
asynchronous, which meansthat the thread is not waiting for a timeout—the timeout is dispatched
to areactive class that can handle it. By using ompe1ay, atask can block athread.

ompelay ishormally used by the application. If areactive instance creates an ompe1ay, it will get a
timeout after the specified delay time.

You call oxr: :delay to create an instance of oMpelay.

Rational Rhapsody 181

Active Behavior Framework

OMProtected Class

Resourcesin a class can be monitored by declaring them guarded, which allows only one
operation to access the resource at any given time. A protected class can be used to model an
exclusive resource; at any given moment, only asingle copy of a single guarded operation (of the
class) can be executing.

The omprotected class (defined in omprotected.h) isthe base classfor all protected objects. It
supports the operations 1ock and unlock USING OMOSMutex.

One central characteristic of real-time system design is the existence of resources that, in the
presence of concurrency, must be managed. The OXF includes abstractions for concurrency
control mechanisms.

oMosMutex iSawrapper classfor an operating system mutex. It supports the operations 10ck and
unlock. A mutex is used for managing exclusive resources.

OMGuard Class

The oMcuard class (defined in omprotected.h) is an enter-exit object (itswork is performed in
cTor and pTor) used to guard a section of code. Several macros (defined in omprotected.h) are
used to start and stop the guard.

OMEvent Class

The omevent class (defined in event .n) isthe base class for all events defined in Rhapsody. The
code generator implicitly derives all events from OVEvent . Events are significant occurrences
located in time and space. In the context of statecharts and activity diagrams, events can trigger
transitions between states.

The Rhapsody execution framework supports three types of events:

¢ Signa events (or “events’)
+ Triggered operations (or “synchronized events’)
+ Timeout events (or “timeouts’)

For detailed information on events, see Event Handling.

182

Frameworks and Operating Systems Reference

OMTimeout Class

OMTimeout Class

Timeouts are a specialization of class oMEvent. The oMTimeout class (defined in event .n)
implements timeouts issued by statecharts or activity diagramswithin reactive classes. The system
timer manages the timeouts and sends them to the requesting object—the object that issued the
timer request.

Timeouts are either created by instances entering states with timeout transitions or delay requests
from user code.

For more information on timeouts, see OMTimeout Class and Event Handling.

OMTimerManager Class

The omTimerManager IS responsible for managing the timeout. How it is called to do itsjob
depends on the tick timer (omosTimer) implementation in the operating system adapter. In most
implementations, thereis an additional thread that providestimer support for the application. If the
timer uses a separate thread, then for a single-threaded application, the Rhapsody-generated
application will have two threads—one thread for the application and one thread for the timer
manager.

The oMTimerManager class (defined in timer . h) manages timeout requests and issues timeout
events to the application objects. oMTimerManager iSasingleton object in the execution
framework.

Thetimer manager has atimer, class omThreadTimer, that notifiesit periodically whenever afixed
timeinterval has passed. At any given moment, the timeout manager holds a collection of timeouts
that should be posted when their time comes. Each time the timer manager is notified by itstimer,
it examines the collection and sends the due timeout to the originating object. The timeout objects
themselves are passive in the sense that they do not contain timers.

Thetimer manager has atimer, classoMThreadTimer, that notifiesit periodically whenever afixed
time interval has passed. oMThreadTimer iSasubclass of oMTimerManager that does the actual
work of dispatching the timeouts to the reactive classes (that is, generating the timeouts to the
reactive classes).

For more information on the oMTimerManager Class, see OMTimerManager Class.

Rational Rhapsody 183

Active Behavior Framework

Customizing Timeout Manager Behavior

By customizing the framework, you can create a class that inherits from the framework base class,
overrides the behavior of the base class, and modifies code generation. All other classes from the
same type will then inherit from the user classinstead of inheriting directly from the framework
base class. For example, you can customize the behavior of the timeout framework by overriding
the schedTm and unschedTm methods so each active class has its own timeout manager. See OXF_
Classes and Methods, for detailed information about these methods.

OMThreadTimer Class

The oMThreadTimer class (definedin timer.nh) inherits from oMTimerManager and performsthe
actual work of dispatching timeouts to the reactive classes (that is, generating the timeouts to the
reactive classes).

OMTimerManagerDefaults Class

The oMTimerManagerDefaults class (defined in timer.h) isused to define values for the
following timer attributes:
¢ defaultTicktime Specifiesthe default value for the basic system tick, in milliseconds.

¢ defaultMaxTM Specifiesthe limitation on the maximum number of timeouts that can exist
in the system. Timeouts are preallocated at system initialization.

184 Frameworks and Operating Systems Reference

Services Package

This section describes the Ser vi ces package, which consists of the following subpackages:

¢ MemoryManagement Package

¢ Containers Package

MemoryManagement Package

The framework supports two memory management packages.

¢ A plug-in memory manager (OMMenor yManager). Thisclass is defined in the
omenor ymanager . cpp/ h. For custom adapters, you must add these files to the OXF
makefile.

+ A static memory manager that enables you to define static memory pools for user classes
and events (defined in MemAl | oc. h).

See OMMemoryManager Class for detailed information about this class's methods.

Containers Package

The containers packageis aset of template and non-template classes implement relationships
(associations and aggregations) in the application’s object model. Each container classis suitable
for different relation attributes. Note that some of the containers (such asomstack, oMgueue and
OMHeap) are not used for relation implementation. They are used internally in the framework, and
can aso be used directly by the client application.

The OXF container classes provide the default implementation for the relations in the object
model. Note that the Rhapsody code generator can be parameterized to use an “ off-the-shel f”
container library, e.g., RogueWave™, MFC, or the Standard Template Library (STL), instead of its
“native” container library. The relation implementation with STL containersis supported “ out-of -
the-box” by Rhapsody.

Rhapsody uses containers to implement to-many relations between objects. These include
relationships of one object to many, or many objects to many. Rhapsody automatically selects the
appropriate container to implement the behaviors of various relations based on the multiplicities,

Rational Rhapsody 185

Services Package

access, and ordering of classes and objects involved. Typical containers are lists, stacks, heaps,
static arrays, collections, and maps, each of which has its own set of behaviors. For example,
arrays allow random access, whereas lists do not.

The OXF supports the following container types:

*

*

OMAbstractContainer—AnN abstract, type-safe container.

oMcollection—A type-safe, dynamically sized array. See OMCollection Class for more
information.

oMHeap—A type-safe, fixed size heap implementation. See OMHeap Class for more
information.

oMIterator—A type-safeiterator over an OMAbst r act Cont ai ner (and derived
containers). See OMiterator Class for more information.

oMList—A type-safe, linked list. See OMList Class for more information.

oMMap—A type-safe map, based on a balanced binary tree (I og(n) search time). See
OMMap Class for more information.

oMoueue—A type-safe, dynamically sized queue. It isimplemented on acyclic array, and
implements a FIFO (first in, first out) algorithm. See OMQueue Class for more
information.

oMstring—A string class. See OMString Class for more information.

oMstack—A type-safe stack that implementsaLIFO (last in, first out) algorithm. See
OMStack Class for more information.

oMstaticarray—A type-safe, fixed-size array. See OMsStaticArray Class for more
information.

In addition to these containers, the OXF supports omu* containers, which are containers that are
not implemented with templates. The use of template-free containers reduces the size of the
generated code considerably.

186

Frameworks and Operating Systems Reference

Containers Package

The OMJ* containers are as follows:
¢ oMUAbstractContainer—AnN unsafe (typeless) abstract container. All derived containers
hold void*. See OMUAbstractContainer Class for more information.

¢ OMUIterator—AnN iterator over oMuabstractContainer and derived containers. See
OMUIlterator Class for more information.

¢ omuList—A typelesslist. See OMUList Class for more information.

¢ oMucollection—A typeless, dynamically sized array. See OMUCollection Class for more
information.

¢ oMuMap—A typeless map. See OMUMap Class for more information.

Rational Rhapsody 187

Services Package

188 Frameworks and Operating Systems Reference

Event Handling

This section describes event handling within the OXF. It describes the following topics:

¢ FEvents

¢ Timeouts

Events

Each class can have events and operations defined on it. In the context of statecharts and activity
diagrams, events can trigger transitions between states.

The Rhapsody execution framework supports three types of events:

+ Signal events (or “events’)—Asynchronous stimuli communicated between instances

that can have parameters. Signal events are implemented by class oMEvent.

+ Triggered operations (or “synchronous events’)—Stimuli that can trigger transitions
synchronously (without queueing them first).

+ Timeout events (or “timeouts’)—Signal the expiration of atimeinterval after acertain
state was entered. Timeout events are implemented by class oMTimeout.

Rational Rhapsody 189

Event Handling

Generating and Queuing an Event

The following sequence diagram shows the generation and queuing of an event.

consumeEvent(ev)E

sh C
runToCompletion()

<_tisBi
doBusy() |:

undoBusy() |:

{oet) return OMEvent™ ev}BI

takeEvent(ev)

get()

etDestination])

ioy) >

getlld()

event reactive destenetion}

{netDestenation() return thelll

ootState_dispatchEvent(id)

{aetlld() return the TO evenltll
id}

L

Dispatching an event.

The sequence here is done
inside

OMThread:: executel),
which is OMThread event
loop.

The seguence show the
essence of the event
dispatching,

omitting many detail that
can be found in the methoc
itself

[
{rootState_dispatchEvent()
is avirtual function of

epletelun()

ransitions

rootState_dispatchEvent(id)

OMReactive}

{The id send in the

av-> isﬂ@

@umeﬂ

Deletel)

The sequence to generate and queue an event is as follows:

1.
2.

A client class creates the event.

predifined Mull_id}

R R S I S T N N

The client class calls the gen method of the reactive class that should consume the event.

The setDestination method sets the destination attribute to the specified oMReactive

instance.

The gueueEvent method asks the thread to queue the event by calling the put method
(defined iN omthread. cpp).

The put method inserts the event into the thread's event queue.

190

Frameworks and Operating Systems Reference

Events

Dispatching an Event

The following sequence diagram shows a dispatched event.

consumeEvent(ev)E

fisBl
doBusy() |:

{oet) return OMEvent™ ev}BI

takeEvent(ev)

get()

etDestination])

ioy) >

getlld()

{netDestenation() return thelll

event reactive destenetion}

ootState_dispatchEvent(id)

{aetlld() return the TO evenltll
id}

L

Dispatching an event.

The sequence here is done
inside

OMThread:: executel),
which is OMThread event
loop.

The seguence show the
essence of the event
dispatching,

omitting many detail that
can be found in the method
itself

sh C
runToCompletion()

epletelun()

ransitions

rootState_dispatchEvent(id)

undoBusy() |:

av-> isﬂ@

@umeﬂ

Deletel)

R R S I S T N N

L
{rootState_dispatchEvent()
is avirtual function of
OMReactive}

{The id send in the
predifined Mull_id}

The method oMThread: :execute iSresponsible for the event loop. This sequence diagram shows
the main sequence of eventsthat are done inside this method.

The event loop is asfollows:

1
2.

execute Callsthe get method to get the first event from the event queue.

If the event isnot aNULL event, execute callsthe getDestination method to determine
the oMreactive destination for the event.

execute CalsthetakeEvent method to request that the reactive object process the event.

takeEvent Callsthe consumeEvent method, which does the following:

a. ItcalsisBusy to determine whether the object is already consuming an event. If the

object is not busy, consumeEvent does the following:

Setsthe sm_busy flag to TrRUE

Calls getlid to get theevent ID

Rational Rhapsody

191

Event Handling

Passes the value of 114 to rootState_dispatchEvent to dispatch that event

b. consumeEvent calls shouldcompleterun to Seeif there are any null transitionsto
take after the event has been consumed. If there are null transitions to be taken, the
method calls runTocompletion to take them.

C. consumeEvent callSundoBusy tO reset the sm_busy flag to FaLsE.

4. execut e callstheisDeleteAfterConsume method to determine whether the event should
be deleted. If the deleteAfterConsume attribute is TRuE, execute callsthe Delete method

to delete the event.

Canceling a Single Event

Events are canceled when the event destination is del eted.

Canceling All Events to a Destination

The cancelEvents method cancels all the events targeted for a specific oMreactive instance. It
callsgetMessageList t0 get alist of al eventsin the thread's event queue.

For each event in the message list:
1. cancelEvents calls getDestination to determine the destination oMreactive instance.

2. If the event’s destination matches the destination parameter passed to cancelEvents, the
method calls cancelEvent to cancel the event.

3. cancelEvent callssetlld to set the event ID to OMCancelledEventld.

192 Frameworks and Operating Systems Reference

Events

Dispatching a Triggered Operation

The following sequence diagram shows a dispatched triggered operation (synchronous event).

=l Sequence Diagram: Dispatching a triggered operation in OXF

{rootState_
dispatchEvent() is a
virtual function of
OMReactive}

4

predefined Mull_id}

I
{The id sent in the

doBusyOE

getlld()

rootState_dispatchEvent(id

sho@

apleteRun{)

runToCompletion() [

ha:

rootState_dispatchEvent(

il frans

{oetldl) returns the TO eventbl
id}

TOCaller ReactivellserPart OMReactive OMEvent
El
rigOp()

Caonstructor

............................ n

ﬁkeanqer(ev}

jonsumeEvent(ev)
lslsy(>

[=1«]

The sequence for dispatching a triggered operation is as follows:

1. ThetakeTrigger method is called for the triggered operation.

2. takeTrigger callsthe consumeEvent method to consume the event.

3. consumeEvent doesthe following:

a.

It callsi sBusy to determine whether the object isalready consuming an event. If the
object is not busy, consumeEvent does the following:

Setsthe sm_busy flag to TrRUE
Calls getlld to get theevent ID

Passes the value of 114 to rootState_dispatchEvent to dispatch that event

consumeEvent CallS shouldcompleteRun t0 Seeif there are any null transitions to

take after the event has been consumed. If there are null transitions to be taken, the
method calls runTocompletion to take them.

consumeEvent callSundoBusy 10 reset the sm_busy flag to FarsE.

Rational Rhapsody

193

Event Handling

4. takeTrigger callsthe shouldTerminate and setShouldDelete methods. |f

(shouldTerminate () && shouldDelete()) iS1(Or TRUE), takeTrigger deletesthe

Timeouts

A timeout isaspecial kind of event that signals that a specified amount of time has elapsed since a
state was entered. The entry point for timeout scheduling is an active object, which creates the
timeout and passes it to the timeout manager, an instance of class oMTimerManager. Each time
oMTimerManager iShotified by itstimer, it examines the collection of timeouts and queues the due
timeouts in the appropriate manager (the active object), where they are treated for dispatching like
any other event. The timeout objects themselves are passive in the sense that they do not contain
timers.

The ID of atimeout event is always Timeout_Event_id. Thisenables event consumersto
distinguish timeouts from other events. Timeouts can be distinguished from one another by a
specia ID called t imeout1d.

194

Frameworks and Operating Systems Reference

Timeouts

Scheduling a Timeout

The following sequence diagram shows a scheduled timeout.

E:Sequence Diagram: schedulind a timeout in OXF

ReactivelJserPart oM OMReactive OMTimertanager Timeout
Thraad

chedTmideltaTime tirmeout |id, reactivelnstance, timeoutMarme)

incarnateTimeoutitimeout_id, timedutMarme, deltaTime)

{incarnateTimeout()
returns a new

timeout} Constructer _ o _____ A

setitimeout)

~]4]

To schedule atimeout, follow these steps:
1. A user classcallsthe schedTm method to create atimeout request.

2. TheschedTm method callstheincarnateTimeout method to create atimeout request for the
reactive object.

3. Theconstructor for the oMmTimeout class, OMTimeout, creates a new timeout event.
4. The schedTm method delegates the timeout request to oMTimerManager.

5. TheschedTm method calls the set method to delegate the timeout request to

OMTimerManager.

Rational Rhapsody 195

Event Handling

Dispatching a Timeout

The following sequence diagram shows a dispatched timeout.

E:Sequence Diagram: dispatching a timeout in OXF

a1}
Thread

OMReactive

Timeout

OMTimertdanager

OMOSTimer

{theEventis the
timeout}

ostd

{The timer manager found
atimeoutwhose due time

actiondimeaouty |:

{actiond is called far eath
matured timeout}

getDestination(

{getDestination(return
reactive destination

getThreadd

gueneEventitheEvent, fromlSR)

{getThread(returns the
class thread (active)}

eactiv

l

Timeouts are consumed as n

gular events

- |41

To queue the timeout event, follow these steps:

1. ThetimeTickcbk method (private) is called to increment m_Time, the accumulated or
current time.

2. ThetimeTickcbk method callspost (private) to get the next scheduled timeout request
from the heap, trim the heap, and move the timeout to the matured list.

3. ThegetDestination method returns the reactive destination.

4. ThegetThread method returns the reactive class thread.

5. Thepost method callsthe gueueEvent method to queue the timeout request to the relevant

thread as an event.

After the timeout event reaches the head of the event queue, the takeEvent method is used by the
event loop (within the thread) to request that the reactive object process the event.

Frameworks and Operating Systems Reference

Timeouts

Unscheduling a Timeout
You unschedule atimeout in the following cases:

* When a state that caused the timeout is exited before the timeout expires
+ During the cancellation of events upon the destruction of an oMreactive instance

A user class callsthe unschedTm method to cancel atimeout request. If the timeout request was
posted but not consumed, it is marked as a canceled event (an event that is not delegated to its
destination). If the timeout request was not posted, it is removed from the timeout manager.

Delaying a Timeout

The following sequence diagram shows a delayed timeout.

= :Sequence Diagram: delay
Delaylrvoker OMDelay OMTimeout OMTimertanager OMOSEventFlag OMOSTimer

Schedule age‘lay Z =]

72

V¢ OXFdelayitimey

onstruetor ___ 4 __ >

Z : Constructor_ _ -

/ Settirmeout) N

7

Z ait() 3

yd

wirakELID fm%delay) T

7

/ post

7 R

% —

7, action(timeout

Z R

/ {this is a delay

% timeout}

7

7, ¢_GetDestination(

% P wakeupl

/ signall) "

% J

7 =

Rational Rhapsody 197

Event Handling

To schedule the delay, follow these steps:

1
2.

The ovpelay constructor creates a delay.
The set method delegates a timeout request to oMTimerManager.

The delay waits until the timeout is over, at which point the t imeTickcbk method
(private) is called. The timeTickcbk method incrementsm Time, the accumulated or
current time.

The timeTickcbk method callspost (private) to get the next scheduled timeout request
from the heap, trim the heap, and move the timeout to the matured list.

The action method sends a matured timeout request to the relevant thread, whereitis
then inserted into the thread’s event queue. Because thetimeout isadelay (isNotDelay =
False), thethread isthe receiver.

The action method calls getbestination, which returns the current value of the
destination attribute (an oMreactive instance).

The action method callswakeup, which resumes processing after the delay time has
expired.

signal() actually wakes up the thread blocking on the event flag.

198

Frameworks and Operating Systems Reference

Analyzing and Customizing

The correctness of real-time systems has an extradimension to it vis-a-vis other systems—in
addition to functional or logical correctness, real-time systems typically carry timing requirements
that must be met. The process of testing a system in that respect is called schedulability analysis.

There are two primary ways of accomplishing this:
1. Empirically, by injecting test data into the system and measuring its reactions.

2. Theoretically, by applying a mathematical analysis method, which can calculate the
overal performance given enough timing information about the system components. Rate
monotonic analysis is an example of such amethod. Thiskind of analysisis usually done
using special tools.

Model-level Debugging and Analysis

Rhapsody facilitates model-level debugging through animated statecharts and sequence diagrams.
You can step through the application at an “object-oriented granularity” (operation call, one event
processing, the whole event queue) and visually observe the effect on the statechart (for example,
change of active state), and on the sequence diagram (for example, message/event arrows are
drawn as they are sent). These capabilities are supported by various framework elements.

Stepping through an application is a good way to test the functional aspects of a system. But most
importantly for real-time applications, you can use Rhapsody for empirical schedulability analysis,
asfollows:

1. Assign estimated durations for the execution of operations.

2. Write adriver that simulates the injection of external eventsinto the system. The driver
can be a script or a statechart that generates events.

3. Activate the driver and the system reacts as programmed, simulating the time required to
perform the operations. While running, Rhapsody generates an animated sequence
diagram and a time-stamped trace. You can inspect these outputs to see if the deadlines

have been met. The Time-Stamped Execution Trace and Sequence Diagram Shows sample
trace information.

Rational Rhapsody 199

Analyzing and Customizing

This performance simulation can be run either on the devel opment host or on the target machine. If
you run it on atarget machine, you have the advantage of measuring response times of the rea
target operating system.

Time-Stamped Execution Trace and Sequence Diagram

OM Tracer (0:00:00.000) <user via Tracer= Sent to ¢2[0] Event e2()

OM Tracer (0:00:00.000) ¢ 2 [0] Received from =user via Tracer= Event e2()
OM Tracer (0 :00:00.000) main() Invoked ¢2[0]-=Take Event e2()

OM Tracer (0 :00:00.000)
OM Tracer ¢0:00:00.000)
OM Tracer (0 :00:00.020)

¢2[0] Inw okied mi21)
¢2[0] Invoked XB21()
¢2[0]-=XB21() Returned

OMTracer (0:00:00.020) ¢2[0] Involed c4[0]-=mf41 ! = * ®
OMTracer (0:00:00.020) c4[0] Involed XB22() f 22

OMTracer (0:00:00.110) ¢4[0]-=>XB22() Returned \\

OM Tracer (0:00:00.110) c4[0]->mf41¢) Returned =10 | 210

OMTracer (0:00:00,1100 «¢2[0] Involed XB23() :|

OMTracer (0:00:00.135) ¢2[0]-=XB23{) Returned HB2A0)

OMTracer (0:00:00.135) ¢2[0]-=mi21) Returned

OM Tracer (0:00:00.135) c2[0]- Take Event e2() Returned G -
OMTracer (0:00:00.135)c1[0] Recedred from =user via Tracer= Evenigl o

OM Tracer (0 :00:00.135) main() Invoked ¢1[0]-=Take Event el() i=heeclyl

OM Tracer (0:00:00.135)
OM Tracer (0 :00:00.135)
OM Tracer (0 :00:00.150)
OM Tracer (0:00:00.150)
OMTracer (0:00:00.150)

OM Tracer (0:00:00.175)
OM Tracer (0:00:00.175)

¢ 1[0] Inwr okced mf110)
¢1[0] Invoked XB11)
¢1[0]-=XB11() Returned

c 1[0] Invoked ¢5[0]-=mi5 1)

c5[0] Invoked XB12()

5[0]-=m51¢) Returned
¢ 1[0]-=mf1 1) Returned

110
B0

S0

R RN

TI=

OMTracer (0:00:00.175)c1[0]-=Take Event el() Returned

The duration of operationsis an example of a Quality of Service (QoS) parameter. There are many
QoS parameters that are relevant to schedul ability analysis. For example, in the level of classes,
QoS parameters include jitter, minimum arrival time, average arrival time, execution time,
blocking time, and so on. Values for these parameters are needed to perform schedulability
analysisin both the empirical and theoretical ways.

Oneimportant goal of future real-time extensions to the UML isto identify an appropriate set of
QoS timeliness properties. The natural mechanism to do that would be UML-tagged values.

Rhapsody has an extensible property mechanism that closely corresponds to the notion of UML-
tagged values. In fact, the QoS parameters mentioned previously, as well as some others, are
currently supported as properties, but they are only informative.

200

Frameworks and Operating Systems Reference

Customizing the Framework

Customizing the Framework

The Rhapsody framework was designed so it could be easily customized by creating classes that
inherit from the framework classes. You could do this within Rhapsody by creating a class that
inherits from an external class that represents the framework.

For example, to modify the active thread that Rhapsody uses, create a class in the model called
OMThread and Set itScG: :Class: :UseAsExternal property to checked. You could then create a
new classinthemodel, My Thr ead, that definesthe OMThr ead class as a superclass. By modifying
My Thr ead, you can modify the framework virtual operations or add more attributes to the
framework classes.

To have the code generator use the customized behavior, set the appropriate properties (such as
CPP_CG::Framework: :ActiveBase). [t iSimportant to note that following this process facilitates
upgrading to new releases of Rhapsody because no changes are done in the framework code itself.

Before upgrading to a new version, review the changes to determine whether they impact your
framework customization.

Note

The Rhapsody code generator gives special treatment to the classes specified in the
framework base class properties. You should always use the framework base class
propertiesif abase classis derived from aframework class.

Rational Rhapsody 201

Analyzing and Customizing

202 Frameworks and Operating Systems Reference

The Rational Rhapsody Interrupt-Driven

For systems requiring a solution with a smaller footprint, the OXF provided with Rational

Framework (IDF)

Rhapsody Developer for C is not appropriate. To provide a solution for these environments, a

limited framework called IDF (Interrupt-Driven Framework) is also provided with Rhapsody.
Refer to the Limitations of the IDE section for the Rational Rhapsody |DF restrictions.

Creating a Sample IDF Project

To learn about the Rhapsody IDF, several IDF components are included as samples that can be
adapted for different target systems. To use the IDF features in sample projects, follow these steps:

1. Change the Properties of the Share\Langc\idf\Adapters\Microsoft t0 remove the
“Read-only” restriction and apply this change to the subfolders. Click OK to save these

changes.

2. Start Rational Rhapsody Developer for C.

3. Openthe Share\LangC\idf\Adapters\Microsoft\MicrosoftNT.rpy Project.

Entire Model Wiew g

=-p MicrosofthT
=-1 Components
=8 idf
SREEY onfiourations
%% «IDF» microsoft_nt
- [E] Hyperlinks
=1 Files
Bl ricos
Bl ricosMT
=1 Packages
=59 OsAL
+- @ Functions
+H$p Types
+- [variables
-89 PredefinedTypes (REF)
+-+3x Stereotypes
+H§p Typas
=89 PredefinedTypesC (REF)
+-«5x Stereotypes
oG Types
=1 Profiles
+-g= IDFFrofle (REF)

Rational Rhapsody

203

The Rational Rhapsody Interrupt-Driven Framework (IDF)

Check to be certain the correct “idf” and “microsoft_nt” components are selected (as
shown below).

Y 3 |idf ﬂ|micrasaﬂ_nt ﬂ

Click ! togeneratetobuildthemsidr.1ib library inthe share\Langc\1ib directory. A
message displays questioning if changes have been made manually and asking if you
want to continue. Click Yes. The build messages display in the output window.

Select the File > Add to M odel option and locate the CycleComputer.

Add to model from another project
From Project CycleConmputer [I]
Urit Type Al |
File: Hame Type Root Element P A Select Al
CycleComputerPkg.sbs Fackage CycleComputerPkg C:M
CycleComputer_Dverview.o... Diagram CycleComputerPlg:... C:M [¥] &dd Subunits
HardwarePkg.sbs Package HardwarePkg C:hE
Hardware_|mplementations.... Diagram HardwarePkg:Har... LA [&udd Dependents
IDFPkg.shz Fackage HardwarePkag:IDF... C:AH
IDF_Owerview. omd Diagram HardwarePka:IDF... T
TestPkag.zbs Fackage HardwarePka: Test... CT:h {(3) Az unit
Test_Display Owerview.omd Diagram HardwarePka: Test... T & e
testing. msc Sequence HardwarePkg:Test... C:hl
WisualCppPkg.zbs Fackage HardwarePkag:Wizu... C:M =
Eflecrdione come Commmne HardumeaBlme e]|
0k] [Cancel] [Help]

204

Frameworks and Operating Systems Reference

Creating a Sample IDF Project

7. Select package (*.sbs) intheFilesof Typefield. Inthefolder selection area, navigate to

the Rhapsody <ver sion>\Share\Profiles folder and highlight the 1pFprofile. sbs file
and select As Reference.

8. Click Open to add this .sbsfile to the CycleComputer model.

Note that IDFProfile (REF) is now in the Profiles folder in the browser, as shown below.
-2 Profiles B -
- A IDFProfile (REF)
=5 Stareotypes
+-xse [OF (RO
+-esx [Nterrupt (RO)
=5x WoPrint (RO)
9. Inthe browser, highlight the Componentsitem, right click, and select Add New
Component. Type 1prFTest into the area provided for the new component in the browser.

Rational Rhapsody 205

The Rational Rhapsody Interrupt-Driven Framework (IDF)

10. Right-click the new 1prFTest component and select Features. In the Scope tab of the
features dialog box, select the cycilecomputerpkg and the 1pFekg under the
HardwarePkg (as shown below) and click OK.

Component : IDFTest in CycleComputer *

General Scope lDescriptiDnl Felations] Tags] F’n:npertiesl

Language: |C ﬂ
(Al Elements
(@ Selected Elements

+- W CyeleComputerFkg
= [HardwarePkg

+ I:ITestPRg
+- [VisualCppPkyg
+- [InterfacePkg

Locate| 0K |A|:||:|I\,r |

11. Inthe browser under the new 1prrest component, right click the befaultconfig to

display the Features dialog box.

12. Inthe Genera tab, change the Name of the configuration to be release. Beside the

Sereotypefield, click the &y and select | DF from the Profiles tree.

You must apply the IDF stereotype to the configuration to ensure that the properties
necessary for using the IDF are set correctly.

13. Click OK toreturn to the General tab. Click Apply to save the new configuration name
and | DF stereotype and keep the dialog box open.

Configuration : DefaultConfig in IDFTest *

Felations] Tags] Froperies
General l Description l Initialization] Settings l Checks
Marme: |Re|ease L
Stereotype: |IDF ﬂﬂﬂ
v
Locate | 1] 4 | Apply |

206 Frameworks and Operating Systems Reference

Creating a Sample IDF Project

14.

15.

Select the Settings tab, from the pull-down menus at the bottom select Microsoftl DF for
the Environment and Release for the Build Set. Click OK. The browser tree for the new
configuration should resembl e this example.

- CycleComputer
=0 Compaonents
+-&1 «Executables visuaklppoui
-8 IDFTest
=3 configurations
SBaN «<IDF» Release
+-[H] Hyperlinks

=

Select the Code > Gener ate >Release options. The code generation messages should
resemble these listed in the Build tab example.

L%

211 Checks

Terminated Successfully

Checker Done

0

Code generated to directory:

Erroriz),

0 Warningis)

©:/Program Files/Telelogic/Rhapsody

7.1/ 8amples/Clamples/CycleComputer/IDFTest/Release

Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating

of
of
of
of

CycleClock into file CycleClock.h
CyzleComputer into file CycleComputer.h
Display inte file Display.h

Keyboard into file Keyboard.h

Sensor into file Sensor.h

specification
specification
specification
specification
specification of
specification of
implementation of
implementation of
implementation of
implementation of

TripTimer into file TripTimer.h

CyeleClock into file Cycleclock.o

CyeleComputer inte file CycleComputer.c

Display into file Display.c

Keyboard into file Keyboard.c

implementation of Sensor into file densor.c

implementation of TripTimer into file TripTimer.c

specification of CycleComputerPkg into file CycleComputerPkg.h
specification of IDFPkg into file IDFPkg.h

implementation of CyeleComputerPkg into file CycleComputerPkg.c
implementation of IDFPkg into file IDFFkg.c

Component initialization code and main function inteo file MainIDFTest.h
Component initialization code and main function inteo file MainIDFTest. o
make file IDFTest.mak

Code Generation Done

\ Build ({. Check Model 4}\ Configuration Management .}\ Animation .}\ Search Results /'

16. To create the executable, select the Code > Build | DFTest.exe (F7) options. The build

Rational Rhapsody 207

The Rational Rhapsody Interrupt-Driven Framework (IDF)

messages should resemble those in the following example:

L= lx

Building ----------—-- IDFTest.exe ————————--——--—
Executing: "C:%Program Files‘\TelelogichRhapsody 7.1%8harebetcimsmake.bat” IDFTest.mak
build

Setting enviromment for using Microscft Visual O++ tools.
CycleComputer. o

TripTimer.<

CycleClock.

Eeyboard. o

densor.c

Display.c

CyeleComputerPhyg. o

IDFPkg. <

MainIDFTest. o

Linking IDFTest.exe

Build Done

17. Tolaunch the TripTimer display, click the Run ¥ icon. The timer displays on ablack
background.

You may continue to experiment with this project to learn more about the Rational Rhapsody IDF
features. For example, if you do not want to use printf, add a define for the NO_PRINT macro.

208

Frameworks and Operating Systems Reference

Adapting the Framework for a Specific Target

Adapting the Framework for a Specific Target

To adapt the IDF to your target, follow these steps:

1. Create the new component and import the OSAL package from the Microsoft NT model
provided (share\LangC\idf\Adapters\Microsoft\MicrosoftNT). The following
functions will have to be modified:

¢ RiClnitTimer—setsup aperiodic interrupt that calls the RiCTick operation
every Ri C_M5_PER Tl CK.

¢ RiCExitCritical Regi on—enablesinterrupts.

¢ RiCEnterCritical Regi on—masksinterrupts.

¢ R CGet Syst enili ck—returns system tick size.

¢ Ri CSl eep—operation is called when there are no events to handle and sleep can
be used until the next timeout or when an interrupt occurs.

2. Createricos<target>.c and ricos.h filesfor the component and add the OSAL package
as an element. Some examples of these filename formats are
$OMROOT\LangC\idf\RiCOSNT.c and for similar target specific files,
$SOMROOT\LangC\oxf.

3. Create adirectory called <target> under the idaf\adapters directory and set it asthe
output directory for thericos.n file.

4. Include anew environment inthe sitec.prp file for <Environment>IDF. Set up the
makefile template, compiler flags, etc.

5. Thefollowing framework constants and typesin the OSAL package must be set:

¢ RI C_MEMORY_ALLOCATI ON—sets up the buffers used for the memory allocation.
¢ Rl C_MAX_EVENTS—maximum number of simultaneous events.

¢ RIC_MAX_TI MEQUTS—maximum number of simultaneous timeouts.

¢ RIC_MS_PER TI CK—periodic timeout in milliseconds.

¢ tRiCCritical Secti on—OS-specific type, which is used during critical
section processing.

6. IfyouneedRi CString, Ri CMap, Ri CLi st,andRi CCol | ecti on, thenthey can be
added to the generic configuration scope and theidf library should be rebuilt. They are not
included by default. To use Ri CSt ri ng, the user must #i ncl ude Ri CStri ng. h.

7. Changethe following propertiesin C_CG : <Tar get >:

¢ MakeFi | eName—<target>i df

Rational Rhapsody 209

The Rational Rhapsody Interrupt-Driven Framework (IDF)

¢ MakeFi | eCont ent —change the name of the IDF library to
<target>i df $(LI B_EXT)

¢ CppConpi | eSwi t ches- add the LangC/Adapters/<target> path.

¢ Add thefollowing property:
Property ReactiveVtbl Kind Enum "OXF, |DF" "I DF"

8. Addtheprofile 1pFrrofile.sbs to the model, as described in the previous section.

Note

If the message, “CG MESSAGE: There are no classes in the component scope,” displays
while performing these steps, the message can be ignored.

Limitations of the IDF

While the IDF has amuch smaller footprint than the standard framework provided with Rhapsody,
the OXF, this size reduction brings with it the following limitations:

*

*

The IDF is single-threaded and interrupt-driven.

It is not possible to use the animation and tracing features with the IDF. All models,
however, can be animated using the OXF.

The IDF requires the use of the “flat statechart implementation” and “ real -time model”
options.

The event queue and timer heaps are not dynamic. Maximum sizes must be set using the
RI C_MAX_EVENTS and RI C_MAX_TI MEQUTS macro definitions.

The property CG : Event s: : BaseNunber OF | nst ances must be set to a value greater
than 0 to allow automatic allocation of memory from the memory pools. The actual
number used will be ignored.

In order to save RAM, the maximum number of consecutive null transitions has been
gresatly reduced - from 100 to 7.

210

Frameworks and Operating Systems Reference

OXF Classes and Methods

This section contains reference pages for the classes and methods that comprise the OXF. Note that
only the public and protected methods are documented.

For ease-of-use, the classes are presented in alphabetical order. Within each class, the methods are
listed in the following order:

1. Constructor

2. Destructor

3. Operators

4. Methods, listed in aphabetical order.

Rational Rhapsody 211

OXF Classes and Methods

OMADbstractMemoryAllocator Class

OMAbst ract Menor yAl | ocat or isthe abstract interface for static memory allocation. The
abstract classis defined in the header file AVemAl oc. h; the header file MemAl | oc. h contains
methods for static memory allocation.

Construction Summary

~OMAbstractMemoryAllocator Destroys the OMAbst r act Menor yAl | ocat or object

Method Summary

allocPool Allocates a memory pool big enough to hold the
specified number of instances

callMemoryPoollsEmpty Controls the overprint of the message displayed when
the pool is out of memory

getMemory Gets the memory for an instance

initiatePool Initiates the “bookkeeping” for the allocated pool

OMSelfLinkedMemoryAllocator Constructs the memory allocator

returnMemory Returns memory from the specified instance

setAllocator Sets the allocation method

setincrementNum Overwrites the increment value

~OMADbstractMemoryAllocator
Visibility
Public
Description
This method is the destructor for the oMabstractMemoryallocator Class.
This method was added to support user-defined memory managers.
Signature

virtual ~OMAbstractMemoryAllocator ()

212 Frameworks and Operating Systems Reference

OMADbstractMemoryAllocator Class

allocPool
Visibility
Public
Description
This method allocates a memory pool big enough to hold the specified number of instances.
Signature

T * allocPool (int numOfInstances) ;

Parameters

numOfInstances

The maximum number of instances the pool should be able to contain

callMemoryPoollsEmpty
Visibility
Public
Description
This method controls the overprint of the message displayed when the pool is out of memory.
Signature

void callMemoryPoolIsEmpty (OMBoolean b)

Parameters

b
A Boolean value that specifies whether to overprint a message when the pool is out of memory

Rational Rhapsody 213

OXF Classes and Methods

getMemory

Visibility

Public
Description

This method gets the memory for an instance.
Signature

void* getMemory (size t size)

Parameter

size

Specifies the size of the memory to be allocated
Return

The memory for an instance
See Also

returnMemory

initiatePool

Visibility

Public
Description

This method initiates the “ bookkeeping” for the allocated pool.
Signature

int initiatePool (T * const newBlock, int numOfInstances);

Parameters

newBlock

The default amount of memory to alocate

numOfInstances

The maximum number of instances that the pool should be able to hold

214 Frameworks and Operating Systems Reference

OMADbstractMemoryAllocator Class

OMSelfLinkedMemoryAllocator
Visibility
Public
Description

This method constructs the memory allocator, specifies whether it is protected, and how much
additional memory should be allocated if the initial pool is exhausted.

Signature

OMSelfLinkedMemoryAllocator (int incrementNum,
OMBoolean isProtected) ;

Parameters

incrementNum

Specifies how much additional memory to alocateif the initial pool is exhausted.

igProtected

Specifies a Boolean value that determines whether the memory allocator is protected. Set this
to TRUE to protect the allocator.

returnMemory
Visibility
Public
Description
This method returns the memory from the specified instance.
Signature

void returnMemory (void *deadObject, size t size)

Parameters

deadObject
A pointer to the memory
size

The size of the alocated memory

Rational Rhapsody 215

OXF Classes and Methods

Return
The memory from the specified instance
See Also

getMemory

setAllocator
Visibility
Public
Description
This method sets the allocation method.
Signature

void setAllocator (T * (*newAllocator) (int))

Parameters

newAllocator

The callback called when the pool runs out of memory

setincrementNum
Visibility
Public
Description
This method overwrites the increment value.

Signature
void setIncrementNum(int value)

Parameters

value

The new increment value

216 Frameworks and Operating Systems Reference

OMADbstractTickTimerFactory Class

OMADbstractTickTimerFactory Class

The oMabstractTickTimerFactory classisthe abstract base class for a user-defined, low-level
timer factory.

The class is defined in the header fileti mer . h.

Method Summary

createRealTimeTimer Creates a real-time timer
createSimulatedTimeTimer Creates a simulated-time timer
TimerManagerCallBack Is a callback of the timer manager

createRealTimeTimer
Visibility
Public
Description

This method creates a real-time timer. Every tick time, the timer should call
Ti mer Manager Cal | Back(cal | BackPar ans) .

This method returns a handle to the timer, so it can be deleted when the timer manager is
destroyed.

Signature

virtual OMOSTimer* createRealTimeTimer (timeUnit tickTime,
TimerManagerCallBack, void* callBackParams) const =0;

Parameters

tickTime

Specifies thetick time.

TimerManagerCallBack

The call to the callback function. The callback should be called every tick time.

callBackParams

Specifies the parameters for the callback function.
Return

The OMOSTi ner

Rational Rhapsody 217

OXF Classes and Methods

See Also

TimerManagerCallBack

createSimulatedTimeTimer
Visibility
Public
Description

This method creates a simulated-time timer. Every tick time, the timer should call
Ti mer Manager Cal | Back(cal | BackPar ans) .

This method returns a handle to the timer, so it can be deleted when the timer manager is
destroyed.

Signature

virtual OMOSTimer* createSimulatedTimeTimer (
TimerManagerCallBack, void* callBackParams) const = 0;

Parameters

TimerManagerCallBack

The call to the callback function. The callback should be called every tick time.

callBackParams

Specifies the parameters for the callback function.
Return

The OMOSTi ner
See Also

TimerManagerCallBack

218 Frameworks and Operating Systems Reference

OMAnNdState Class

TimerManagerCallBack
Visibility
Public

Description
This method is a callback of the timer manager. which notifies the manager of the tick.

Signature

typedef void (*TimerManagerCallBack) (void*) ;

OMAnNdState Class

The OMANd St at e class contains functions that affect And states in statecharts.
This classis defined in the header file st at e. h.

Construction Summary

OMAnNdState Constructs an OVAndSt at e object

Method Summary

lock Locks the mutex of the OVBt at e object
unlock Unlocks the mutex of the OVSt at e object
OMAnNdState
Visibility
Public
Description

This method is the constructor for the OMANdSt at e class.

Signature

OMAndState (OMState* par, OMState* cmp) ;

Parameters

par

Specifies the parent

Rational Rhapsody 219

OXF Classes and Methods

cmp

Specifies the component

lock
Visibility
Public
Description
This method locks the mutex of the OVt at e object.
Signature

void lock () ;

unlock
Visibility
Public
Description
This method unlocks the mutex of the OVst at e object.
Signature

void unlock () ;

220 Frameworks and Operating Systems Reference

OMCollection Class

OMCollection Class

The OMCol | ect i on class contains basic library functions that enable you to create and
manipulate OMCol | ecti ons. An OMCol | ect i on isan unordered, unbounded container.

This classis defined in the header fileontol | ec. h.
Base Template Class

OVBt ati cArray

Construction Summary

OMCallection Constructs an OMCol | ect i on object
~OMCollection Destroys the OMCol | ect i on object

Method Summary

add Adds the specified element to the collection

addAt Adds the specified element to the collection at the given
index

remove Deletes the specified element from the collection

removeAll Deletes all the elements from the collection

removeBylndex Deletes the element found at the specified index in the
collection

reorganize Reorganizes the contents of the collection

Rational Rhapsody 221

OXF Classes and Methods

OMCollection
Visibility
Public
Description
This method is the constructor for the OMCol | ect i on class.
Signature

OMCollection(int theSize=DEFAULT START_ SIZE)

Parameters

theSize

Theinitial size of the collection. Theinitial collection sizeis20 € ements.
See Also

~OMCaollection

~OMCollection
Visibility
Public
Description
This method is the destructor for the OMCol | ect i on class.
Signature

~OMCollection ()

See Also

OMCaollection

222 Frameworks and Operating Systems Reference

OMCollection Class

add
Visibility
Public
Description
This method adds the specified element to the collection.
Signature

void add (Concept p)

Parameters

p
The element to add

See Also

addAt

remove

removeAll

removeBylndex

addAt
Visibility
Public
Description
This method adds the specified element to the collection at the given index.
Signature

void addAt (int index, Concept p)

Parameters

index

The index at which to add the new element

jof

Rational Rhapsody 223

OXF Classes and Methods

The element to add
See Also
add

remove

removeAll

removeBylIndex

remove
Visibility
Public
Description
This method del etes the specified element from the collection.
Signature

void remove (Concept p);

Parameters

p

The element to delete
See Also

add

addAt

removeAll

removeBylIndex

224 Frameworks and Operating Systems Reference

OMCollection Class

removeAll
Visibility
Public
Description
This method deletes all the elements from the collection.
Signature

void removeAll () ;

See Also
add

addAt

remove

removeBylndex

Rational Rhapsody 225

OXF Classes and Methods

removeBylndex
Visibility
Public
Description
This method deletes the element found at the specified index in the collection.
Signature

void removeByIndex(int 1)
Parameters
i
Theindex of the element to delete

See Also

remove

removeAll

reorganize

Visibility

Public
Description

This method enables you to reorganize the contents of the collection.
Signature

void reorganize (int factor = DEFAULT FACTOR) ;

Parameters

factor

Specifies the array size increment factor. For example, if the array sizeis 20 elements and the
factor is 3, the new array size will be 60 elements. The default factor is 2.

226 Frameworks and Operating Systems Reference

OMComponentState Class

OMComponentState Class

The OMConponent St at e class defines methods that affect component states in statecharts.
This classis defined in the header file st at e. h.

Flag Summary

active

Marks the component state as active ‘

Construction Summary

Constructs an OMConrponent St at e object ‘

‘ OMComponentState

Method Summary

enterState Specifies the method called on the entry to the state (the
entry action)
in Checks whether the owner class is in this state
takeEvent Takes the specified event off the queue
Flags
active

Marks the component state as active. It is defined as follows:

OMState* active;

Rational Rhapsody 227

OXF Classes and Methods

OMComponentState
Visibility
Public
Description
This method is the constructor for the OMConponent St at e class.
Signature

OMComponentState (OMState* par = NULL)

Parameters

par

The parent

enterState
Visibility
Public
Description
This method specifies the method called on the entry to the state (the entry action).
Signature

virtual void enterState() ;

Visibility
Public
Description

This method checks whether the owner classisin this state. This method is used by the
I'S_I N() macro.

Signature

int in() ;

228 Frameworks and Operating Systems Reference

OMComponentState Class

takeEvent
Visibility
Public
Description
This method takes the specified event off the event queue.
Signature

virtual int takeEvent (short 1Id);

Parameters

11d
Specifiesthe event ID

Rational Rhapsody 229

OXF Classes and Methods

OMDelay Class

OVDel ay isused to delay acalling thread. OVDel ay is essentially another way of issuing a
timeout—QOVDel ay callsit on its own.

OvDel ay isnormally used by the application. If areactive instance creates an OvDel ay, it will
get atimeout after the specified delay time.

This classis defined in the header fileont hr ead. h.

Flag Summary

stopDelay Initiates the delay

Construction Summary

OMDelay Constructs an OvDel ay object
~OMDelay Destroys the OVDel ay object

Method Summary

wakeup Resumes processing after the delay time has expired

Flag
stopDelay
Initiates the delay. The syntax is as follows:

OMOSEventFlag* stopSignal;
The OMOSEvent Fl ag classisdefined in os. h.

230 Frameworks and Operating Systems Reference

OMDelay Class

OMDelay
Visibility
Public

Description

This method is the constructor for the OvDel ay class.

Signature
OvDel ay (timeUnit t);
Parameters

t

Specifies the delay, in milliseconds
See Also

~OMDelay

~OMDelay
Visibility
Public
Description
This method is the destructor for the OvDel ay class.
Signature

~OVDel ay()
See Also

OMDelay

Rational Rhapsody

231

OXF Classes and Methods

wakeup
Visibility
Public
Description
This method resumes processing after the delay time has expired.
Signature

voi d wakeup();

232 Frameworks and Operating Systems Reference

OMEvent Class

OMEvent Class

OMVEvent isthe base classfor all events defined in Rhapsody and from which the code generator
implicitly derives all events. OvVEvent isan abstract class and is declared in thefileevent . h.

OMVEvent hastwo important data attributes:

¢ destination—Every event “knows” which OVReact i ve started it. When the thread wants
to send the event to its destination, it looksto the dest i nat i on attribute to find the
target OVReact i ve instance.

¢ liId—Every event has an ID. Rhapsody code generation automatically generates sequential
IDs, but you can also specify the ID associated with an event. You might want to do this,
for example, to maintain the ID across compilation, add more events, do special things
with an event, or use a specific ID because you are sending it out of the application.

You can specify the event ID in the Rhapsody properties at two levels: anindividual event ID or a
base ID number for every package. Using the base number, Rhapsody assigns every event a
sequentia 1D number.

Every object and event that inherits from OVEvent can add additional datato store event-specific
information. For example, if you want to send an event with the current time, you can add an
attribute with the relevant type name and the event will have access to the additional data.

Event parameters are mapped by code generation to data members of event classes that inherit
from OVEvent .

OMEvent isalso the base class for two special kinds of events:

+ timeout event—In addition to thel | d attribute for an event, atimeout hasaTi meout
attribute. The code generator automatically generates different timeouts. The Ti neout
attribute specifies how long to wait until the timeout is expired and activated. The
Ti meout attribute specifiesthe absol ute time when the timeout will be executed (m_Ti nme
+ Ti meout).

+ delay event—The delay event is used infrequently. Its purposeisto delay athread. When
the thread gets a delay event, it pauses for the delay time.

Events are normally generated in two steps, which are encapsul ated within the GEN macro in the
framework:

1. Anevent classisinstantiated, resulting in a pointer to the event.
2. Theeventisqueued by adding the new event pointer to the receiver's event queue.

Once the event has been instantiated and added to the event queue of the receiver, the event is
ready to be “sent.” The success of the send operation relies on the assumption that the memory
address space of the sender and receiver are the same. However, thisis not aways the case.

Rational Rhapsody 233

OXF Classes and Methods

For example, the following are some examples of scenarios in which the sender and receiver
memory address spaces are most likely different:

¢+ Theevent issent between different processes in the same host.
¢ Theevent is sent between distributed applications.
¢ The sender and receiver are mapped to different memory partitions.

One common way to solve this problem isto marshall the information. Marshalling means to
convert the event into raw data, send it using frameworks such as publish/subscribe, and then
convert the raw data back to its original form at the receiving end. High-level solutions, such as

CORBA®, automatically generate the necessary code, but with low-level solutions, you should
take explicit care. Rhapsody allows you to specify how to marshall, and not marshall, events and
instances by creating “ standard operations’ to handle this task.

For low-level solutions, you may use one of these partial animation methods:
¢ In the same selected component, using properties to enable/disable the animation of
specific packages, classes, and so on.
¢ Mix animated and non-animated componentsin the same executable.
To support partial animation, C++ code generation has the following characteristics:

+ |nheritance of user classes and events from AOVielements was cancel ed.

¢ For each animated user class (event), afriend classis created in the code. The friend class
isresponsible for the animation of the user class.

¢ All the animation-specific methods are now part of the animation f ri end class.
To support partial animation, OXF has the following characteristics:

¢ Inheritance from AOMclasses was canceled (OvVEvent and OVReact i ve).

+ Attributes that were protected by #i f def _OM NSTRUMENT are now regular attributes,
with default values that can be handled by the non-animated version of the framework.

¢ Animation friend classes were added for the framework-visible events.

234 Frameworks and Operating Systems Reference

OMEvent Class

Attribute Summary

deleteAfterConsume

Determines whether an event should be deleted after it
is consumed

destination Specifies an OVReact i ve instance
frameworkEvent Specifies whether an event is a framework event
lid Specifies a value for an event ID

Constant Summary

OMEventAnyEventld

Is a reserved event ID that specifies any event

OMCancelledEventld

Is a reserved event ID that specifies a canceled event
(an event that should not be sent to its destination)

OMEventNullld

Is a reserved event ID used to consume null transitions

OMEventStartBehaviorld

Is a reserved event ID used for QVBt ar t Behavi or
events

OMEventOXFEndEventld

Is a reserved event ID used to cleanly close the
framework when a COM server that uses the framework
DLL is deleted

OMEventTimeoutld

Is a reserved event ID used for timeouts

Construction Summary

OMEvent

Constructs an OVEvent object

~OMEvent

Destroys the OVEvent object

Method Summary

Delete

Deletes an event instance (releases the memory used
by an event)

getDestination

Returns the reactive destination of the event

getlid

Returns the event ID

isCancelledTimeout

Determines whether the event is canceled

isDeleteAfterConsume

Returns TRUE if the event should be deleted by the
event dispatcher (OMThr ead) after its consumption

isFrameworkEvent Returns TRUE if the event is an internal framework
event

isRealEvent Returns TRUE if the event is a null-transition event,
timeout, or user event

isTimeout Returns TRUE if the event is a timeout

isTypeOf Returns TRUE if the event is from a given type (has the

specified ID)

setDeleteAfterConsume

Determines whether the event should be deleted by the
event dispatcher (OMThr ead) after it is consumed

setDestination

Sets the event reactive destination

Rational Rhapsody

235

OXF Classes and Methods

setFrameworkEvent Sets the event to be considered as a internal framework
event
setlld Sets the event ID
Attributes
deleteAfter Consume

This protected attribute determines whether an event should be deleted after it is consumed.
The possible values for thisflag are as follows:
¢ TRUE—AnN event should be deleted after it is consumed. Thisisthe default value.
¢ FALSE—AnN event should not be deleted after it is consumed.

By default, every event is deleted after it is consumed by the statechart. The thread sends the
event, the reactive does what has to be done to consume the event, and when there is nothing
left to do, the thread (which maintains the event queue) deletes the event.

del et eAf t er Consune controls whether to delete the event. You might choose not to delete
an event, especially when events are statically allocated. In such cases, you should set
del et eAf t er Consurme to FALSE.

It isdefined as follows:
OVBool ean del et eAft er Consune;

destination
This protected attribute specifies an OVReact i ve instance.

It is defined as follows:
OVReact i ve* destination;

The OVReact i ve classisdefined in onr eact i ve. h.

framewor kEvent

This protected attribute specifies whether an event is a framework event. The possible values
areasfollows:

¢ TRUE—Theevent is aframework event.
¢ FALSE—Theeventisauser event. Thisisthe default value.

Some events are used internally within the Rhapsody framework; these events require special
attention. For example, some internal events should not be instrumented in order to minimize
system overhead. If f r amewor kEvent isset to TRUE, lessinformation is gathered for the
event.

236 Frameworks and Operating Systems Reference

OMEvent Class

Typicaly, you will not need to change the default value of f r amewor kEvent .

It isdefined as follows:
OVvBool ean framewor kEvent ;

ld
This protected attribute specifies avaue for an event ID.

Every event has an ID. Code generation automatically generates sequential 1Ds, but you can
also specify the ID associated with an event. You might want to do this, for example, to
maintain the ID across compilation, add more events, do special thingswith an event, or use a
specific ID because you are sending it out of the application.

You can specify the event ID in the Rhapsody properties at two levels:

* Specify anindividua event ID.

+ Specify abase ID number for every package. Using the base number, Rhapsody
assigns every event a sequential 1D number.

It is defined as follows:
short 11d;

See the Constants section for the list of constant valuesfor | | d.

Constants

OMEventAnyEventld
Thisisareserved event ID that specifies any event.

It isdefined isas follows:
const short OVEvent AnyEventld = -4;

OMCancelledEvent|d

Thisisareserved event ID that specifies a canceled event (an event that should not be sent to
its destination).

It is defined as follows:
const short OMEvent Cancel | edEventld = -3;

OMEventNullld

Thisisareserved event ID used to consume null transitions. It is defined as follows;
const short OMEventNullld = -1;

Rational Rhapsody 237

OXF Classes and Methods

OMEventSartBehaviorld
Thisisareserved event ID used for OvBt ar t Behavi or events.

It is defined as follows:
const short OVEvent StartBehaviorld = -5;

OMEventOXFEndEventld

Thisisareserved event ID used to cleanly close the framework when a COM server that uses
the framework DLL is deleted.

It isdefined as follows:
const short OMVEvent OXFEndEvent!|ld = - 6;

OMEventTimeout!d
Thisisareserved event ID used for timeouts.

It isdefined as follows:
const short OVEventTineoutld = -2;

OMEvent
Visibility
Public
Description
This method is the constructor for the OVEvent class.
Signature

OvEvent (short plld = 0, OVReactive* pdest = NULL);

Parameters

plId
Specifiesthe event ID. The default valueis 0.

pdest
Specifies the destination OVReact i ve instance. The default valueis NULL.

238 Frameworks and Operating Systems Reference

OMEvent Class

Notes

Events are generated by applying the gen method. The gen method calls gueueEvent to queue
events to be processed by the thread event loop. The gen method is expanded by the GEN
macro, which also creates the event. See Macros for the description of the GEN macro.

See Also

gen

~OMEvent

queueEvent

~OMEvent
Description
This method is the destructor for the OVEvent class.

Signature

vi rtual ~OvEvent ()

See Also

OMEvent

Rational Rhapsody 239

OXF Classes and Methods

Delete
Visibility
Public
Description

This method deletes an event instance (rel eases the memory used by an event). The Del et e
method is used instead of the standard del et e operation to support the static memory
allocation of events by Rhapsody.

Use only this method to delete events.
Signature

virtual void Delete()

Notes

If the deleteAfterConsume attribute is TRUE, the execute method calls Del et e to delete the
event.

See Also

execute

getDestination
Visibility
Public
Description
This method returns the reactive destination of the event.
Signature

OVReact i ve *get Destination() const

Return
The destination, which is an OVReact i ve instance
Notes

Theget Dest i nati on method is called by the OMTi mer Manager : : act i on method. It is
also called by the OMThr ead: : execute method to determine the OVReact i ve destination for
an event.

240 Frameworks and Operating Systems Reference

OMEvent Class

See Also
action
destination
execute

setDestination

getlld
Visibility
Public
Description
This method returns the event ID.
Signature

short getlld() const

Return
I 1d, thevaluefor the event ID

See Also

Id

setlld

Rational Rhapsody 241

OXF Classes and Methods

iIsCancelledTimeout
Visibility
Public
Description
This method determines whether the event is canceled.
Signature

OVBool ean i sCancel | edTi meout () const

Returns
The method returns one of the following Boolean values:

¢ TRUE—Thevaueof | | d isOMCancelledEventid.

¢ FALSE—Thevaueof | | d isnot OMCancelledEventid.

See Also

getlid

Id

setlld

isDeleteAfterConsume
Visibility
Public
Description

This method returns TRUE if the event should be deleted by the event dispatcher (OMThr ead)
after its consumption.

Thismethod is called by the OMThr ead: : execute method.

Signature
OVBool ean i sDel et eAft er Consune() const

Returns

The method returns one of the following values:

242 Frameworks and Operating Systems Reference

OMEvent Class

¢ TRUE—The event should be deleted after it is consumed.
¢ FALSE—The event should not be deleted after it is consumed.

See Also
deleteAfterConsume

execute

setDeleteAfterConsume

isFrameworkEvent

Visibility

Public
Description

This method returns TRUE if the event is an internal framework event.
Signature

OVBool ean i sFranmewor kEvent () const

Return
The method returns one of the following Boolean values:

¢ TRUE—The event is aframework event.
¢ FALSE—Theevent is not aframework event.

See Also
frameworkEvent

setFrameworkEvent

Rational Rhapsody 243

OXF Classes and Methods

iIsRealEvent
Visibility
Public
Description
This method returns TRUE if the event is a null-transition event, timeout, or user event.
Signature

OVBool ean i sReal Event () const

Returns
The method returns one of the following Boolean values:

¢ TRUE—Thevaueof | | d iseither OMEventNullld Or OMEventTimeoutld.

¢ FALSE—Thevalueof | | d isneither OMEventNullld nor OMEventTimeoutld, Or iS
auser event.

iIsTimeout
Visibility
Public
Description
This method returns TRUE if the event is atimeout.
Signature

OwvBool ean i sTi neout () const

Returns
The method returns one of the following Boolean values:

¢ TRUE—Thevalueof | | d isOMEventTimeoutld.

244 Frameworks and Operating Systems Reference

OMEvent Class

¢ FALSE—Thevalueof | | d isnot OMEventTimeoutld.

iIsTypeOf
Visibility
Public
Description
This method checks whether the event is from a given type (has the specified D).

Client events should override this method, as follows:
OvBool ean i sTypeO (short id) const {
if (id == <event>ld) return TRUE;
return <super event>::isTypeO(id);

Signature
vi rtual OMBool ean i sTypeO (short id) const
Parameters
id
Specifies the event 1D to check for
Returns

The method returns one of the following Boolean values:

¢ TRUE—The event has the specified ID.
¢ FALSE—The event does not have the specified ID.

Note

To handle the consumption of derived events in a generic manner, use the isTypeOf method.
With this method, the generated code checks the event type. The isTypeOf method returns
TRUE for derived events, as well as for the actual event.

Rational Rhapsody 245

OXF Classes and Methods

setDeleteAfterConsume
Visibility
Public
Description

This method determines whether the event should be deleted by the event dispatcher
(OMThr ead) after it is consumed.

Signature
voi d set Del et eAft er Consunme (OvBool ean doDel et e)
Parameters

doDelete

Specifies the value of the del et eAf t er Consunre attribute. The possible values are as
follows:

¢ TRUE—Delete the event after it is consumed.
¢ FALSE—Do not delete the event after it is consumed.

See Also

deleteAfterConsume

isDeleteAfterConsume

246 Frameworks and Operating Systems Reference

OMEvent Class

setDestination
Visibility
Public
Description
This method sets the event reactive destination.

This method is called by the OvReact i ve: : _gen method when an object is sending an event
to an OVReact i ve object.

Signature
voi d setDestination (OVReactive* cb)
Parameters

cb
Specifiesthe OVReact i ve instance

See Also
gen

etDestination

setFrameworkEvent
Visibility
Public
Description
This method sets the event to be considered as ainternal framework event.
Signature

voi d set Framewor kEvent (OvBool ean i sFramewor kEvent)

Parameters

igFrameworkEvent

Specifies the value of thef r amewor kEvent attribute. The possible values are as follows:

¢ TRUE—Theevent isaframework event.
¢ FALSE—Theevent is not aframework event.

Rational Rhapsody 247

OXF Classes and Methods

See Also
frameworkEvent

isFrameworkEvent

setlld
Visibility
Public
Description
This method setsthe event ID.
Signature

void setlld (short pld)
Parameters
pId

Specifies the new event ID

See Also

getlid

lid

unschedTm

248 Frameworks and Operating Systems Reference

OMFinalState Class

OMFinalState Class

The OWFi nal St at e class represents afinal state—a state that has no exiting transitions and that
make its parent state completed (i sConpl et ed() returnstrue).

This classis defined in the header file st at e. h.

Construction Summary

‘ OMFinalState ‘ Constructs an OVFi nal St at e object ‘

Method Summary

‘ getConcept ‘ Returns the current element ‘

Rational Rhapsody 249

OXF Classes and Methods

OMFinalState
Visibility
Public
Description
This method is the constructor for the OMFi nal St at e class.
Signature

OMFinalState (OMReactive * cpt, OMState * par,
OMState * cmp, const char * hdl = NULL)

OMFinalState (OMReactive * cpt, OMState * par,
OMState * cmp, const char * /* hdl */ = NULL)

Parameters

cpt - Statechart owner
par - parent

cmp - component
hdl - handle

250 Frameworks and Operating Systems Reference

OMFinalState Class

getConcept
Visibility
Public
Description
This method returns the current element.
Signature

virtual AOMInstance * getConcept () const

Return

The current e ement

Rational Rhapsody 251

OXF Classes and Methods

OMFriendStartBehaviorEvent Class

The OVFri endSt ar t Behavi or Event class was added to animate the start behavior event
classin instrumented mode. The friend class declaration is empty for non-instrumented code.

This classis defined in the header fileevent . h.

Construction Summary

OMFriendStartBehaviorEvent Is the constructor for the OVSt ar t Behavi or Event
class

Method Summary

cserialize Is part of the Rhapsody animation serialization
mechanism

getEventClass Returns the event class

serialize Is called during animation to send event information

OMFriendStartBehaviorEvent
Visibility
Public
Description
This method is the constructor for the OVFr i endSt ar t Behavi or Event class.
Signature

OMFriendStartBehaviorEvent (OMStartBehaviorEvent*
userEventPtr) ;

Parameter

userEventPtr

A pointer to the event

252 Frameworks and Operating Systems Reference

OMFriendStartBehaviorEvent Class

cserialize
Visibility
Public
Description

This method is part of the animation serialization mechanism. It passes the values of the
instance to a string, which is then sent to Rhapsody.

Signature

OMSData* cserialize (OMBoolean withParameters) const;

Parameter

withParameters

A Boolean value that specifies whether to include the parameter values

getEventClass
Visibility
Public
Description
This method returns the event class. This method is used for animation purposes.

Signature

AOMEventClass * getEventClass() const

Rational Rhapsody 253

OXF Classes and Methods

serialize
Visibility
Public
Description
This method is called during animation to send event information.
Signature

void serialize (AOMSEvent* e) const;

Parameters

e

Specifies the event

254 Frameworks and Operating Systems Reference

OMFriendTimeout Class

OMFriendTimeout Class

The OVFri endTi meout class animates the timeout class in instrumented mode. The friend
class declaration is empty for non-instrumented code.

This classis defined in the header fileevent . h.

Construction Summary

OMFriendTimeout Is the constructor for the OVFri endTi neout class

Method Summary

cserialize Is part of the Rhapsody animation serialization
mechanism

getEventClass Returns the event class

serialize Is called during animation to send event information

OMFriendTimeout
Visibility
Public
Description
This method is the constructor for the OMFr i endTi meout class.
Signature

OMFriendTimeout (OMTimeout* userEventPtr)

Parameters

userEventPtr

A pointer to the timeout event

Rational Rhapsody 255

OXF Classes and Methods

cserialize
Visibility
Public
Description

This method is part of the animation serialization mechanism. It passes the values of the
instance to a string, which is then sent to Rhapsody.

Signature

OMSData* cserialize (OMBoolean withParameters) const;

Parameters

withParameters

A Boolean value that specifies whether to include the parameter values

getEventClass
Visibility
Public
Description
This method returns the event class. This method is used for animation purposes.

Signature

AOMEventClass * getEventClass() const

256 Frameworks and Operating Systems Reference

OMFriendTimeout Class

serialize
Visibility
Public
Description
This method is called during animation to send event information.
Signature

void serialize (AOMSEvent * e) const

Parameters

e

Specifies the event

Rational Rhapsody 257

OXF Classes and Methods

OMGuard Class

OMGuar d isused to make user operations guarded or locked between entry and exit. It is used
in the generated code (in the GUARD_OPERATI

freeing of the mutex in a guarded operation.

The copy constructor and assignment operator
erroneous unlock of the guarded object mutex.

Thisclassis defined in the header file onpr ot

Macro Summary

ON macro) to ensure appropriate locking and

of OMauard are explicitly disabled to avoid

ect ed. h.

END_REACTIVE_GUARDED_SECTION

Ends protection of a section of code used
for a reactive object

END_THREAD_GUARDED_SECTION

Stops protection for an operation of an
active user object

GUARD_OPERATION

Guards an operation by an OMGuar d
class object

START_DTOR_REACTIVE_GUARDED_SECTION Starts protection of a section of code used

for destruction of a reactive instance

START _DTOR_THREAD_GUARDED_SECTION

Starts protection for an active user object
destructor

START_REACTIVE_GUARDED_SECTION

Starts protection of a section of code used
for a reactive object

START _THREAD_ GUARDED_SECTION

Starts protection for an operation of an
active user object

Construction Summary

OMGuard

Constructs an OMGuar d object

~OMGuard

Destroys the OMauar d object

Method Summary

getGuard Gets the guard
lock Locks the mutex of the OMGuar d object
unlock Unlocks the mutex of the OMGuar d object

258 Frameworks and Operating Systems Reference

OMGuard Class

M acros
END REACTIVE_GUARDED_SECTION

Ends protection of a section of code used for areactive object. Thismacrois called
in the reactive class event dispatching to prevent a“race” between the event
dispatching and a deletion of the reactive classinstance. The mechanismis activated
when the reactive class DTOR is set to be guarded.

END_THREAD_GUARDED_SECTION

Stops protection for an operation of an active user object. The macroisused in
OMThr ead event dispatching to guard the event dispatching from deletion of the
active object. The mechanism is activated in the code generated for active classes,
when the active class DTOR is set to be guarded.

The START _THREAD GUARDED SECTI ON macro and the

END_THREAD GUARDED_SECTI ON macros are called by the execute method if
toGuardThread iS TRUE.

GUARD_OPERATION

Guards an operation by an OMGuar d class object. It is used in the generated code.

This macro supports the aggregation of OvPr ot ect ed in guarded classes as well as
inheritance from OVPr ot ect ed by guarded classes.

OMDECLARE_GUARDED

Aggregates OVPr ot ect ed objects inside guarded classes instead of inheritance
from OVPr ot ect ed. It isdefined asfollows:

#define OMDECLARE GUARDED
public:
inline void lock() const {m_omGuard.lock() ;}
inline void unlock() const
{m_omGuard.unlock() ;}
inline const OMProtected& getGuard()
const {return m_omGuard;}

START_DTOR_REACTIVE_GUARDED_SECTION

Starts protection of a section of code used for destruction of areactiveinstance. This
macro is called in the DTOR of areactive (not active) classwhen it is set to guarded.
Thisisdoneto prevent a“race” (between the deletion and the event dispatching)
when deleting a reactive instance.

Rational Rhapsody 259

OXF Classes and Methods

START_DTOR_THREAD_GUARDED_SECTION

Starts protection for an active user object destructor. This macro iscalled in the
DTOR of an active classwhen it is set to guarded. Thisis done to prevent a“race”
(between the deletion and the event dispatching) when deleting an active instance.

START_REACTIVE_GUARDED_SECTION

Starts protection of a section of code used for areactive object. This macro is called
in the reactive class event dispatching to prevent a“race” between the event
dispatching and adeletion of the reactive classinstance. The mechanism is activated
when the reactive class DTOR is set to be guarded.

START_THREAD_GUARDED_SECTION

Starts protection for an operation of an active user object. The macroisusedin
OMThr ead event dispatching to guard the event dispatching from deletion of the
active object. The mechanism is activated in the code generated for active classes
when the active class DTOR is set to be guarded.

The START _THREAD GUARDED SECTI ON macro and the
END_THREAD_GUARDED_SECTI ON macros are called by the execute method if
toGuardThread iS TRUE.

260

Frameworks and Operating Systems Reference

OMGuard Class

OMGuard
Visibility
Public
Description
This method is the constructor for the OMauar d class. It locks the mutex of the user object.
Signature

OMauard (const OWProtected& pObj,
bool needl nstrunmentation = true);

Parameters

pObj
Specifies aguarded user abject

needInstrumentation

Added for animation support
See Also

~OMGuard

~OMGuard
Visibility
Public
Description
This method is the destructor for the OMauar d class. It frees the mutex of the guarded object.
Signature

~OMauar d()
See Also

OMGuard

Rational Rhapsody 261

OXF Classes and Methods

getGuard
Visibility
Public
Description
This method gets the guard object.

Signature

inline const OMProtected& getGuard() const

Return

The guard object

lock
Visibility
Public
Description
This method locks the mutex of the OMauar d object.

Signature

inline void lock() const

unlock
Visibility
Public
Description
This method unlocks the mutex of the OMauar d object.

Signature

inline void unlock() const

262 Frameworks and Operating Systems Reference

OMHeap Class

OMHeap Class

The OvHeap class contains basic library functions that enable you to create and manipulate
OVHeap objects. An OvHeap is atype-safe, fixed size heap implementation. An OvHeap has

elements of type Node*.

Thisclassis defined in the header file omheap. h.

Construction Summary

OMHeap Constructs an OvHeap object
~OMHeap Destroys the OvHeap object

Method Summary
add Adds the specified element to the heap.
find Looks for the specified element in the heap.
isEmpty Determines whether the heap is empty.
remove Deletes the specified element from the heap.
top Moves the iterator to the top of the heap.
trim Deletes the top of the heap.
update This method is currently unused.

Rational Rhapsody

263

OXF Classes and Methods

OMHeap
Visibility
Public
Description
This method is the constructor for the OvVHeap class.
Signature

OMHeap (int size=100)

Parameters

size

The amount of memory to allocate for the heap. The default size is 100 bytes.
See Also

~OMHeap

~OMHeap
Visibility
Public
Description
This method destroys the OviHeap object.
Signature

~OMHeap ()

See Also

OMHeap

264 Frameworks and Operating Systems Reference

OMHeap Class

add

find

Visibility

Public
Description

This method adds the specified element to the heap.
Signature

void add (Node* e) ;

Parameters

e

The element to add to the heap

Visibility
Public

Description

This method looks for the specified element in the heap.

Signature

int find (Node* clone) const;

Parameters

clone

The element to look for
Return
The method returns one of the following values:

¢ 0—The element was not found.
¢ 1—The element was found.

Rational Rhapsody

265

OXF Classes and Methods

ISEmpty
Visibility
Public
Description
This method determines whether the heap is empty.
Signature

int isEmpty () const

Return
The method returns one of the following values:
¢ 0—Theheap isnot empty.
¢ 1—Theheap isempty.

remove
Visibility
Public
Description
This method removes the first occurrence of the specified element from the heap.

Signature
Node* remove (Node* clone) ;

Parameters

clone

The element to delete
Return

If successful, the method returns the deleted el ement. Otherwise, it returns NULL.

266 Frameworks and Operating Systems Reference

OMHeap Class

top
Visibility
Public

Description

This method moves the iterator to the top of the heap.

Signature

Node* top() const

Return

The top-most element

trim
Visibility
Public
Description
This method del etes the top of the heap.
Signature

void trim() ;

update
Visibility
Public
Description
Currently, this method is unused.
Signature

void update (Node* e) ;

Rational Rhapsody

267

OXF Classes and Methods

OMInfiniteLoop Class

OM nfi ni t eLoop isan exception class that should be raised on an infinite loop of null
transitions. It is currently not used by the execution framework.

It is declared in the header fileonr eacti ve. h.

OMlterator Class

TheOM t er at or class contains methods that enable you to use a standard iterator for all the
classes derived from OMAbst r act Cont ai ner.

This classis defined in the header file omabscon. h.

Construction Summary

OMIlterator Constructs an OM t er at or object

Method Summary

operator * Returns the current value of the iterator

operator ++ Increments the iterator

increment Increments the iterator by 1

reset Resets the iterator to the beginning or the specified
location

value Returns the value found at the current position

268 Frameworks and Operating Systems Reference

OMIterator Class

OMlterator
Visibility
Public
Description
This method is the constructor for the OM t er at or class.
Signature

OMIterator () ;
OMIterator (const OMAbstractContainer<Concept>& 1)

OMIterator (const OMAbstractContainer<Concept>* 1)

Parameters

1
The container the iterator will visit

operator *
Visibility
Public
Description
The* operator returns the current value of the iterator.
Signature

Concept& operator* ()

Return

The current value of the iterator

Rational Rhapsody

269

OXF Classes and Methods

operator ++
Visibility
Public
Description
The ++ operator increments the iterator.
Signature

OMIterator<Concept>& operator++ ()

OMIterator<Concept> operator++ (int i)
Parameters
i
Increments the iterator to the next element in the container

Return

The incremented value of the iterator

increment
Visibility
Public
Description
This method increments the iterator by 1.
Signature

OMIterator<Concept>& increment ()

Return

The new value of the iterator

270 Frameworks and Operating Systems Reference

OMIterator Class

reset

value

Visibility
Public

Description

This method resets the iterator to the beginning or the specified location.

Signatures

void reset ()

void reset (OMAbstractContainer<Concept>& newLink)

Parametersfor Signature 2

newLink

The new position for the iterator

Visibility

Public
Description

This method returns the element found at the current position.
Signature

Concepté& value ()

Return

The element found at the current position

Rational Rhapsody

271

OXF Classes and Methods

OMLeafState Class

The OMLeaf St at e class sets the active state of the component.
Thisclassis defined in the header filest at e. h.

Construction Summary

‘ OML eafState ‘ Creates an OMLeaf St at e object
Flag Summary
‘ component ‘ Specifies a component

Method Summary

entDef Specifies the operation called when the state is entered
from a default transition
enterState Specifies the state entry action
exitState Specifies the state exit action
in Returns TRUE when the owner class is in this state
serializeStates Is called during animation to send state information
Flags
component

Specifies a component. It is defined as follows:
OMConponent St at e* conponent ;

272 Frameworks and Operating Systems Reference

OMLeafState Class

OMLeafState
Visibility
Public
Description
This method is the constructor for the OMLeaf St at e class.
Signature

OMLeafState (OMState* par, OMState* cmp)

Parameters

par

Specifies the parent

cmp

Specifies the component

entDef
Visibility
Public
Description
This method specifies the operation called when the state is entered from a default transition.
Signature

virtual void entDef () ;

Rational Rhapsody 273

OXF Classes and Methods

enterState
Visibility
Public
Description
This method specifies the state entry action
Signature

virtual void enterState() ;

exitState
Visibility
Public
Description
This method specifies the state exit action.
Signature

virtual void exitState() ;

Visibility
Public
Description
This method returns TRUE when the owner classisin this state.
Signature
int in();
Return

The method returns one of the following values:

¢ 0—Notin
¢ 1—In

274 Frameworks and Operating Systems Reference

OMLeafState Class

serializeStates
Visibility
Public
Description
This method is called during animation to send state information.
Signature

virtual void serializeStates (AOMSState* s) const;

Parameters

S

Specifies the state

Rational Rhapsody 275

OXF Classes and Methods

OMList Class

The OWLi st class contains basic library functions that enable you to create and manipul ate
OMLi st s. AnOWLi st isatype-safe, linked list.

This classis defined in the header fileond i st . h.
Base Template Class
OvBt ati cArray

Construction Summary

OMList Constructs an OMLi st object
~OMList Destroys the OMLi st object
Flag Summary

Specifies the first element in the list
Specifies the last element in the list

276 Frameworks and Operating Systems Reference

OMList Class

Method Summary

operator [] Returns the element at the specified position

add Adds the specified element to the end of the list

addAt Adds the specified element to the list at the given index

addFirst Adds an element at the beginning of the list

find Looks for the specified element in the list

getAt Returns the element found at the specified index

getCount Returns the number of elements in the list

getCurrent Is used by the iterator to get the element at the current
position in the list

getFirst Is used by the iterator to get the first position in the list

getFirstConcept Returns the first Concept element in the list

getlLast Is used by the iterator to get the last position in the list

getLastConcept Returns the last Concept element in the list

getNext Is used by the iterator to get the next position in the list

isEmpty Determines whether the list is empty

removekFirst

Removes the first item from the list.=

remove Deletes the first occurrence of the specified element
from the list
removeAll Deletes all the elements from the list

removeFirst

Deletes the first element from the list

removeltem

Deletes the specified element from the list

removel ast

Deletes the last element from the list

Rational Rhapsody

277

OXF Classes and Methods

Flags
first
Specifiesthe first element in thelist. It is defined as follows:

OMListItem<Concept>* first;
last

Specifiesthe last element in the list. It is defined as follows:

OMListItem<Concept>* last;

Example
Consider the following example:

OMterator<Cbserver*> iter(itsQoserver);
while (*iter)

(*iter)->notify();
iter++

}

278 Frameworks and Operating Systems Reference

OMList Class

OMList
Visibility
Public
Description
This method is the constructor for the OMLi st class. The method creates an empty list.
Signature

OMList ()

See Also

~OMList

~OMList
Visibility
Public
Description
This method emptiesthe list.
Signature

virtual ~OMList ()

See Also

OMList

Rational Rhapsody 279

OXF Classes and Methods

operator []
Visibility
Public
Description
The[] operator returns the element at the specified location.
Signature

Concepté& operator [] (int i) const
Parameters
i

The index of the e ement to return

add
Visibility
Public
Description
This method adds the specified element to the end of thellist.
Signature

void add (Concept c);

Parameter

(e}

The element to add to the end of thelist
See Also

addAt

addFirst

remove

removeAll

removeFirst

280 Frameworks and Operating Systems Reference

OMList Class

addAt

removel ast

Visibility
Public

Description

This method adds the specified element to the list at the given index.

Signature

void addAt (int i, Concept c);

Parameters
i
Thelist index at which to add the element

c

The element to add
See Also
add

addFirst

remove
removeAll
removeFirst

removelast

Rational Rhapsody

281

OXF Classes and Methods

addFirst
Visibility
Public
Description
This method adds an element at the beginning of thelist.
Signature

void addFirst (Concept c);

Parameters

(¢}

The element to add at the beginning of the list

See Also

remove
removeAll
removeFirst

removel ast

282 Frameworks and Operating Systems Reference

OMList Class

find
Visibility
Public
Description
This method looks for he specified element in the list.
Signature
int find(Concept c) const;
Parameters
c
The element to look for
Return
The method returns one of the following values:
¢ 0—Theelement was not found.
¢ 1—Theelement was found.
getAt
Visibility
Public
Description

This method returns the element found at the specified index.
Signature

Concepté& getAt (int i) const;
Parameters
i
The index of the e ement to retrieve

Return

The element found at the specified index

Rational Rhapsody 283

OXF Classes and Methods

See Also

getCount
getCurrent
getFirst
getl ast

getNext

getCount
Visibility
Public
Description
This method returns the number of elementsin the list.
Signature

int getCount () const;

Return

The number of e ementsin thelist

getCurrent
Visibility
Public
Description
This method is used by the iterator to get the element at the current position in the list.
Signature

virtual Concept& getCurrent (void* pos) const

Parameters

pos

The position

284 Frameworks and Operating Systems Reference

OMList Class

Return

The element (Concept) at the current positionin the list

getFirst
Visibility
Public
Description
This method is used by the iterator to get the first position in the list.

Signature
virtual void getFirst (void*& pos) const

Parameters

pos

Thefirst position in the list
See Also
getlLast

getNext

getFirstConcept
Visibility
Public
Description
This method returnsthe first Concept element inthelist.
Signature

Concepté& getFirstConcept () const

Return

Thefirst Concept element inthelist

Rational Rhapsody 285

OXF Classes and Methods

See Also

getLastConcept

getLast
Visibility
Public
Description
This method is used by the iterator to get the last position in the list.
Signature

virtual void getLast (void*& pos) const

Parameters

pos

Thelast position in the list
See Also
getFirst

getNext

getLastConcept
Visibility
Public
Description
This method returnsthe last Concept element inthelist.
Signature

Concepté& getLastConcept () const

Return
Thelast Concept elementinthelist
See Also

getFirstConcept

286 Frameworks and Operating Systems Reference

OMList Class

getNext
Visibility
Public

Description

This method is used by the iterator to get the next position in thelist.

Signature
virtual void getNext (void*& pos) const

Parameters

pos

The next position in the list
See Also

getFirst

getlL ast

ISEmpty
Visibility
Public
Description
This method determines whether the list is empty.
Signature

int isEmpty () const

Return
The method returns one of the following values:

¢ 0—Thelist isnot empty.
¢ 1—Thelistisempty.

Rational Rhapsody

287

OXF Classes and Methods

_removeFirst
Visibility
Public
Description
This method removes the first item from the list.

Note

It is safer to use the method removeFirst because that method has more checks than
removeFirst.

Signature

inline void _removeFirst ()

See Also

removeFirst

remove
Visibility
Public
Description
This method deletes the first occurrence of the specified element from the list.
Signature

void remove (Concept c);

Parameters

(¢}

The element to delete

See Also

removeAll

288 Frameworks and Operating Systems Reference

OMList Class

removeFirst

removelast

removeAll
Visibility
Public
Description
This method deletes all the elements from the list.

Signature

void removeAll ()

See Also

remove
removeFirst

removelast

removeFirst
Visibility
Public

Description

This method deletes the first element from the list.

Signature
void removeFirst ()
See Also
add

addAt

Rational Rhapsody

289

OXF Classes and Methods

remove
removeAll

removel ast

removeltem

Visibility

Public
Description

This method deletes the specified element from the list.
Signature

void removeItem (OMListItem<Concepts *item);

Parameters

item

Theitem to delete

See Also

remove
removeAll
removerFirst

removel ast

290 Frameworks and Operating Systems Reference

OMList Class

removelast
Visibility
Public
Description

This method del etes the last element from the list.

Note

This method is not efficient because the Rhapsody framework does not keep backward
pointers. It is recommended that you use one of the other r enove functionsto delete
elementsfrom the list.

Signature

void removelast ()

See Also

remove
removeAll
removeFirst

removeltem

Rational Rhapsody 291

OXF Classes and Methods

OMListltem Class

The OW.i st | t emclassisahelper classfor OWLi st that contains functions that enable you to
manipulate list elements.

This classis defined in the header fileom i st . h.

Construction Summary

OMListltem Constructs an OMLi st | t emobject

Method Summary

connectTo Connects the list item to the list
getNext Gets the next item in the list
OMListltem
Visibility
Public
Description

This method is the constructor for the OMLi st | t emclass.
Signature
OMListItem(const Concept& theConcept)
Parameters

theConcept
The new list element

292 Frameworks and Operating Systems Reference

OMListltem Class

connectTo
Visibility
Public
Description
This method connects the specified list item to the list.
Signature

void connectTo (OMListItem *item)

Parameters

item

Thelist item

getNext
Visibility
Public
Description
This method gets the next item in the list.
Signature

OMListItem<Concept>* getNext () const

Return

The next item in thelist

Rational Rhapsody 293

OXF Classes and Methods

OMMainThread Class

OWAi nThr ead isaspecial case of OMThr ead that defines the default, active class of the
application. By default, this class takes control over the application’s main thread (see the start
method for detailed information). The OWVAi nThr ead classis a singleton—only oneinstance
is created.

Thisclassis declared in ont hr ead. h.
Base Class
OMThr ead

Construction Summary

~OMMainThread Destroys the OMMai nThr ead object

Method Summary

destroyThread Cleans up the singleton instance of OVMai nThr ead
instance Creates and retrieves the singleton instance of
OWAai nThr ead
start Starts the singleton event loop (OMThr ead: : execut e)
of the main thread singleton

294 Frameworks and Operating Systems Reference

OMMainThread Class

~OMMainThread
Visibility
Public
Description
This method is the destructor for the OMMai nThr ead class.
Signature

virtual ~OwMai nThread()

destroyThread
Visibility
Public
Description

This method cleans up the singleton instance of OMVRI nThr ead. This method overrides the
method OMThr ead: : dest r oy Thr ead.

Signature

virtual void destroyThread/()

instance

Visibility

Public
Description

This method creates and retrieves the singleton instance of OMMai nThr ead.
Signature

static OMThread* instance (int create = 1);

Parameters

create

Specifies whether an instance should be created. If thisis set to 1, an OMvai nThr ead instance
is created.

Rational Rhapsody 295

OXF Classes and Methods

If creat e issetto 0, thei nst ance method returns one of the following values:

¢ Thesingleton instance, if it already exists
¢ NULL, if the instance does not exist

Return
OMThr ead*
Notes

If amain thread does not exist, OMvai nThr ead creates one and returns OVMVai nThr ead. If a
main thread already exists, OvMai nThr ead returns the OWai nThr ead.

start
Visibility
Public
Description
This method starts the singleton event loop (OMThr ead: : execut e).
Signature
virtual void start (int doFork = 0);
Parameters
doFork
Specifies whether the OMvai nThr ead singleton event loop should run on the application main
thread (doFor k == 0) or in aseparate thread (doFor k == 1).
Sample Use
For example, many applications require a GUI with its own library. The Rhapsody library has
an event queue and amain thread, and the GUI usually hasits own event queue. In order for
both event queues to work together, you can start the main thread with doFor k = 1. This
starts the main thread of the GUI and forks a new thread for the Rhapsody library.
296 Frameworks and Operating Systems Reference

OMMap Class

OMMap Class

The OMvap class contains basic library functions that enable you to create and manipulate
Ovivaps. An OWap is atype-safe map, based on a balanced binary tree (I og(n) search time).

This classis defined in the header file onmap. h.

Construction Summary

OMMap Constructs an OMVap object
~OMMap Destroys the OMMap object

Method Summary

operator [] Returns the element found for the specified key

add Adds an element to the map

find Looks for the specified element is in the map
etAt Returns the element for the specified key

getCount Returns the number of elements in the map

getKey Gets the element for the specified key

isEmpty Determines whether the map is empty

lookUp Looks up the specified element in the map

remove Deletes the specified element from the map

removeAll Deletes all the elements from the map

Rational Rhapsody 297

OXF Classes and Methods

Example

Consider aclass, Gr aph, that hasabf s() operation that performs BFS search on the graph
nodes to find a node with the specified data. The following figure shows the OMD of the
G aph class.

: Object Model Diagram: Context in OMQueuellzageSample

Graph Graph::Mode
+data : void *

L]

nodes

+bfs(const void® data) const Graph::Mode®

+addAggregates | *

298 Frameworks and Operating Systems Reference

OMMap Class

The following figure shows the browser view of the Gr aph class.

Entire: Model Yiew ~

E%I Sample

E-£3 Components

= Classes
=B Graph
= Classes
. B-M Mode
£ Attibutes
E data
EE Operations
il addiagregates(OMQusue<Made®s & queue, const OMMapcNade® ints & visited]
Bt Relations
L ¥ nodes
= Operations
- bfg{const void® data)
=-#H Relations
i nodes
=3 Object Model Diagrams
z Contest

Thebf s() implementation uses OMQueue as the search container and Ovvap as arecord of
the visited elements.

Rational Rhapsody 299

OXF Classes and Methods

The following figure shows the implementation of Gr aph: : bf s() .

General Implementation | Properties

Ibfs[c:onst woid”]

V/ the gueue is used as the search main container
OMoueus<Node*> searchCueues;
A/ map of the elements we already visited
OMMap<MNode®,int> visited;
AEEELESL TSI
A7 do tke BFS
AEEELESL TSI
A4 set the First mode of the searchk
searchQueue. put (nodes[0]);
/4 start the search
Node® theNode = NULL:
while [i(theNode == NULL) &£& |['searchQueue.isEmpty(l)] {
Node* node = searchQueue.get(]:
if | 'node) continue;
A4 check & add tke node to the visited list
int durny: f

| v

if (wisited.lookUp(node, dwmny) '= 0) continue;
vizited[node] = 1:
AF compare the data
if (node->getDatal) == data) {
/4 Found

thelNode = node:;
}
else |
A4 add the node aggregates to the search gqueue
node-raddAggregates (SearchQueus, wvisited):
}
}
return thelNode:

-
1 | »

Locatel 0K | Apply: ||

The following figure shows the implementation of Gr aph: : Node: : addAggr egat es() .

General Implementation | Properties —

Iadd&ggregates[ﬂMQueue<Node"> . const OMMap<Mode® ints&]

hnt dureny; -
ONIterator<Node*> iter (nodes);
for (:; *iter; ++iter]

Node® node = *iter;

if (visited.lookUp(node, duwmny) '= 0) continue; // already visited

gueue. put (node) ;

Locatel 0K | Apply: ||

300 Frameworks and Operating Systems Reference

OMMap Class

OMMap
Visibility
Public
Description
This method is the constructor for the OvVap class.
Signature

OMMap ()

See Also

~OMMap

~OMMap
Visibility
Public
Description
This method destroys the OMvap object.
Signature

~OMMap ()

See Also

OMMap

Rational Rhapsody 301

OXF Classes and Methods

operator []
Visibility
Public
Description
The[] operator returns the element for the specified key.
Signature

Concepté& operator [] (const Key& k)

Parameters

13
The key of the element to get

Return

The element at the specified key

302 Frameworks and Operating Systems Reference

OMMap Class

add
Visibility
Public
Description
This method adds the specified element to the given key.
Signature

void add(Key k, Concept p);
Parameters

13
The map key to which to add the element

P
The element to add

See Also

remove

removeAll

Rational Rhapsody 303

OXF Classes and Methods

find
Visibility
Public
Description
This method looks for the specified element in the map.
Signature
int find(Concept p) const
Return
The method returns one of the following values:
¢ 0—The element was not found in the map.
¢ 1—The element was found.
getAt
Visibility
Public
Description

This method returns the element found at the specified location.
Signature

Concept& getAt (int i) const;
Parameters
i
The location of the element to get

Return

The element found at the specified location

304 Frameworks and Operating Systems Reference

OMMap Class

getCount
Visibility
Public
Description
This method returns the number of elements in the map.
Signature

int getCount () const

Return

The number of elementsin the map

getKey
Visibility
Public
Description
This method gets the element for the specified key.
Signature

Concept& getKey (const Key& k) const

Parameters

k
The map key

Return

The element for the specified key

Rational Rhapsody 305

OXF Classes and Methods

ISEmpty

Visibility

Public
Description

This method determines whether the map is empty.
Signature

int isEmpty () const

Return
The method returns one of the following values:

¢ 0—The map isnot empty.
¢ 1—Themapisempty.

lookUp
Visibility
Public
Description
This method determines whether the specified element isin the map. If it is, it places the
contents of the concept referenced by the key in the ¢ parameter, and returnsthe value 1.
Signature
int lookUp (const Key k, Concept& c) const
Parameters
k
The map key
c
The element to look up
Return
The method returns one of the following values:
¢ 0—The element was not found in the map.
306 Frameworks and Operating Systems Reference

OMMap Class

¢ 1—Theedement was found.

remove
Visibility
Public
Description
This method deletes the specified element.
Signature

void remove (Key k)

void remove (Concept p)
Parametersfor Signature 1

k
The map key of the element to delete

Parametersfor Signature 2

p
The element to delete. The method del etes the first occurrence of the object.
See Also
add

removeAll

Rational Rhapsody 307

OXF Classes and Methods

removeAll
Visibility
Public
Description

This method deletes al the elements from the map.

Signature
void removeAll ()

See Also

QD
(o

remove

308 Frameworks and Operating Systems Reference

OMMapltem Class

OMMapltem Class

The OMvapl t emclassisahelper class for OMMap that contains functions that enable you to
manipulate map el ements.

This classis defined in the header file onmap. h.

Construction Summary

OMMapltem Constructs an OMVapl t emobject
~OMMapltem Destroys the OMVapl t emobject

Method Summary

‘ getConcept Returns the current map item

OMMapltem

Visibility

Public
Description

This method is the constructor for the OMvapl t emclass.
Signature

OMMapItem(Key theKey, Concept theConcept) ;

Parameters

theKey
The map key

theConcept
The new map element

See Also

~OMMapltem

Rational Rhapsody 309

OXF Classes and Methods

~OMMapltem
Visibility
Public
Description
This method destroys the OMvapl t emaobject.
Signature

virtual ~OMMapItem()

See Also

OMMapltem

getConcept
Visibility
Public
Description
This method returns the current element.
Signature

Concepté& getConcept ()

Return

The current element

310 Frameworks and Operating Systems Reference

OMMemoryManager Class

OMMemoryManager Class

OwvMenor yManager isthe default memory manager for the framework. It is part of the
mechanism that enables you to use custom memory managers.

The OXF had built-in memory control support for the following elements:

+ All generic types except for states. Thereis no full support for reusable state machines.

¢ OS adapter support for VxWorks. To add support to other OS adapters, add
OM_DECLARE_FRAMEWORK _MEMORY_ALLOCATI ON_OPERATORS in the adapter classes
declaration, and use the OVWNEWand OVDEL ETE macros for buffer allocation and deletion.

The OMMenor yManager class supports user control over memory allocation.

In addition, protection against early destruction on application exit is provided. This protection
ensures that the internal memory manager singleton is valid throughout the termination of the
application. To accomplish this, the following members are supplied in the class:

¢ OMMemoryManager—A constructor

¢ -~OMMemoryManager—A destructor

¢ satic bool _singletonDestroyed—A destruction indicator flag

Base Class
OvAbst ract Menor yAl | ocat or

Construction Summary

OMMemoryManager Constructs an OVMMenor yManager object
~OMMemoryManager Destroys the OVMMenor yManager object

Rational Rhapsody 311

OXF Classes and Methods

Macro and Operator Summary

OM DECLARE_FRAMEWWORK _ Defines the memory allocation operators
MEMORY_ALLOCATI ON_

OPERATORS

OVDELETE Deletes the specified memory using either the memory

manager or the global delete operator (when the
framework and application are compiled with
OM_NO_FRAMVEWORK_MEMORY_MANAGER)

OMGET_VEMORY Allocates memory using either the memory manager or
the global new operator (when the framework and
application are compiled with

OM_NO_FRAMVEWORK _MEMORY_MVANAGER)

OWNEW Allocates memory using either the memory manager or
the global new operator (when the framework and
application are compiled with
OM_NO_FRAMEWORK _MEMORY _MANAGER)

Method Summary

getDefaultMemoryManager Returns the default memory manager
getMemory Records the memory allocated by the default manager
getMemoryManager Returns the current memory manager
returnMemory Returns the memory from an instance

Operatorsand Macros
OM_DECLARE_FRAMEWORK_MEMORY_ALLOCATION_OPERATORS

The macros and operators support user control over memory allocation. The new
parameter NEW DUMWY_PARAMIs set to “si ze_t =0" for every compiler.

The updated definition is as follows:

defi ne OM DECLARE_FRAVEWORK_MEMORY_ALLOCATI ON_OPERATORS

public:

static void* operator new (size_t size
NEW DUMWY_PARAM

static void* operator new] (size_t size
NEW DUMWY_PARAM

static void operator delete (void * object,
size_t size)

static void operator delete[] (void * object,
size_t size)

312 Frameworks and Operating Systems Reference

OMMemoryManager Class

OMGET_MEMORY

Allocates memory using either the memory manager or the global new operator
(when the framework and application are compiled with
OM NO_FRAMVEWORK_MEMORY _MANAGER).

It isdefined as follows:

#define OMGET_MEMORY (size)
OMNEW

Allocates memory using either the memory manager or the global new operator
(when the framework and application are compiled with
OM_NO_FRAMEVORK _MVEMORY_MANAGER).

It is defined as follows:

#define OMNEW (type, size)
OMDELETE

Deletes the specified memory using either the memory manager or the global delete
operator (when the framework and application are compiled with the
OM NO_FRAVEWORK _MEMORY _MANAGER switch).

It isdefined as follows:

#define OMDELETE (object, size)

Rational Rhapsody 313

OXF Classes and Methods

OMMemoryManager
Visibility
Public
Description
This method is the constructor for the OvMenor yManager class.
Signature

OMMemoryManager (bool theFrameworkSingleton = false);

Parameter

theFrameworkSingleton

A Boolean value that specifies that thisis not the memory manager singleton

~OMMemoryManager
Visibility
Public
Description
This method is the destructor for the OMMenor yManager class.
Signature

virtual ~OMMemoryManager () ;

See Also

OMMemoryManager

314 Frameworks and Operating Systems Reference

OMMemoryManager Class

getDefauItMemoryManager
Visibility
Public
Description

This method returns the default memory manager for the framework, regardless of the
manager currently being used.

Signature

static OMAbstractMemoryAllocator*
getDefaultMemoryManager () ;

Return
The default memory manager for the framework
See Also

getMemory

getMemoryManager

Rational Rhapsody 315

OXF Classes and Methods

getMemory

Visibility

Public

Description

This method provides the memory requested. This method is optional, and is available if you
compiled the framework with the OM_ENABLE_MEMORY_MANAGER _SW TCH compiler switch.

This method is called from the framework object’s new operator.

Signature
virtual void * getMemory (size t size);

Parameter

size

Specifies the size of the memory to be allocated by the default manager
See Also

returnMemory

getMemoryManager

Visibility

Public
Description

This method returns the current memory manager.
Signature

static OMAbstractMemoryAllocator* getMemoryManager () ;

Return
The current memory manager
See Also

getDefaultMemoryManager

316

Frameworks and Operating Systems Reference

OMMemoryManager Class

return Memory
Visibility
Public
Description
This method returns the allocated memory.
This method is called from framework object’s del et e operator.

Signature
virtual void returnMemory (void * object, size t size);

Parameters

object
A pointer to the reclaimed memory

size

The size of the alocated memory

See Also

getMemory

Rational Rhapsody 317

OXF Classes and Methods

OMMemoryManagerSwitchHelper Class

OwvMenor yManager Swi t chHel per isasingleton of the OMMenor yManager Swi t chHel per
class. It isresponsible for logging memory allocations, and enables client objects to check
whether a specific memory allocation is registered.

By default, the switch helper logic is disabled. To enable it, compile the framework using the
OM_ENABLE_MEMORY_MANAGER SW TCH compiler switch.

Construction Summary

OMMemoryManagerSwitchHelper Creates an OVMVenor yManager Swi t chHel per object
~OMMemoryManagerSwitchHelper Destroys an OV\Menor yManager Swi t chHel per object
Method Summary
cleanup Cleans up the allocated memory list
findMemory Searches for a recorded memory allocation
instance Returns the singleton instance of the
OwWenor yManager Swi t chHel per
isLogEmpty Determines whether the memory log is empty
recordMemoryAllocation Records a single memory allocation
recordMemoryDeallocation Records a single memory deallocation
setUpdateState Specifies whether the singleton should be updated
shouldUpdate Determines whether the singleton should be updated
(and have new memory allocations recorded)

318 Frameworks and Operating Systems Reference

OMMemoryManagerSwitchHelper Class

OMMemoryManagerSwitchHelper
Visibility
Public
Description
This method is the constructor for the OMMVenor yManager Swi t chHel per class.
Signature

OMMemoryManagerSwitchHelper ()

See Also

~OMMemoryManagerSwitchHelper

~OMMemoryManagerSwitchHelper
Visibility
Public
Description
This method is the destructor for the OMMVenor yManager Swi t chHel per class.
Signature

~OMMemoryManagerSwitchHelper ()

See Also

OMMemoryManagerSwitchHelper

Rational Rhapsody 319

OXF Classes and Methods

cleanup
Visibility
Public
Description
This method cleans up the allocated memory log.
Signature

void cleanup () ;

findMemory
Visibility
Public
Description
This method searches for a recorded memory allocation.
Signature

bool findMemory (const void*) const;

Return
The method returns one of the following Boolean values:

¢ true—The memory was found in the recorded memory.
¢ fal se—Thememory was not found.

320 Frameworks and Operating Systems Reference

OMMemoryManagerSwitchHelper Class

instance
Visibility
Public
Description
This method returns the singleton instance of the OMMenor yManager Swi t chHel per.
Signature

static OMMemoryManagerSwitchHelper* instance() ;

Return

The singleton instance of OMVenDr yManager Swi t chHel per

iIsLogEmpty
Visibility
Public
Description
This method determines whether the memory log is empty.
Signature

inline bool isLogEmpty () const

Return
The method returns one of the following Boolean values:

¢ true—Thememory log isempty.
¢ fal se—Thememory log isnot empty.

Rational Rhapsody 321

OXF Classes and Methods

recordMemoryAllocation
Visibility
Public
Description

This method records a single memory allocation. It is called by the default memory manager
when the framework is compiled using the OM_ENABLE_MEMORY_MANAGER_SW TCH
compiler switch.

Signature
bool recordMemoryAllocation (const void* memory) ;
Parameters

memory

Specifies the memory alocation to record
Return

The method returnst r ue if successful; f al se otherwise.
See Also

recordMemoryDeallocation

322 Frameworks and Operating Systems Reference

OMMemoryManagerSwitchHelper Class

recordMemoryDeallocation

Visibility
Public
Description

This method records a single memory deallocation. It is called by the default memory manager
when the framework is compiled using the OM_ENABLE_MEMORY_MANAGER_SW TCH
compiler switch.

Signature
bool recordMemoryDeallocation (const void* memory) ;
Parameters

memory

Specifies the memory alocation to record
Return

The method returnst r ue if the memory record was found and removed successfully.
Otherwise, it returnsf al se.

See Also

recordMemoryAllocation

Rational Rhapsody 323

OXF Classes and Methods

setUpdateState

Visibility

Public

Description

This method specifies whether the memory |og should be updated. It is called by the OXF: : init
method.

Signature
void setUpdateState (bool) ;
Parameters

bool

Set thistot r ue to have the memory log updated (and have new memory allocations
recorded). Otherwise, set thistof al se.

See Also

shouldUpdate

shouldUpdate

Visibility
Public
Description

This method determines whether the memory log should be updated (and have new memory
allocations recorded).

Signature

bool shouldUpdate() const;

Return
The method returnst r ue if the singleton should be updated. Otherwise, it returnsf al se.
See Also

setUpdateState

324

Frameworks and Operating Systems Reference

OMNotifier Class

OMNotifier Class

TheOWNot i fi er class defines methods that write messagesto either the error log or to
standard output.

This classis defined in the header file oxf . h.

Method Summary

notifyToError Writes messages to the error log
notifyToOQutput Writes messages to standard output

notifyToError
Visibility
Public
Description
This method writes messages to the error log.
Signature

static void notifyToError (const char *msg) ;

Parameters

msg

The message to display on the screen

Rational Rhapsody 325

OXF Classes and Methods

notifyToOutput
Visibility
Public
Description
This method writes messages to standard output.
Signature

static void notifyToOutput (const char *msg) ;

Parameters

msg

The message to display on the screen

326 Frameworks and Operating Systems Reference

OMOrState Class

OMOrState Class

The OMOr St at e class defines methods that affect Or states in statecharts.
This classis defined in the header file st at e. h.

Construction Summary

‘ OMOrState ‘ Constructs an OMOr St at e object ‘
Flag Summary
‘ subState ‘ Specifies a substate ‘

Method Summary

entDef Specifies the operation called when the state is entered
from a default transition
enterState Specifies the state entry action
exitState Specifies the state exit action
getSubState Gets the substate
in Returns TRUE when the owner class is in this state
serializeStates Is called during animation to send state information
setSubState Sets the substate
Flags
subSate

Specifies a substate. It is defined as follows:
OVSt at e* subSt at e;

Rational Rhapsody 327

OXF Classes and Methods

OMOr State
Visibility
Public
Description
This method is the constructor for the OMOr St at e class.
Signature

OMOrState (OMState* par = NULL)

Parameters

par

Specifies the parent

entDef
Visibility
Public
Description
This method specifies the operation called when the state is entered from a default transition.
Signature

virtual void entDef () ;

enterState
Visibility
Public
Description
This method specifies the state entry action.
Signature

virtual void enterState() ;

328 Frameworks and Operating Systems Reference

OMOrState Class

exitState
Visibility
Public
Description
This method specifies the state exit action.
Signature

virtual void exitState() ;

getSubState
Visibility
Public
Description
This method returns the substate.

Signature

virtual OMState* getSubState() ;

Return

The substate

Rational Rhapsody

329

OXF Classes and Methods

in

Visibility

Public
Description

This method returns TRUE when the owner classisin this state.
Signature

int in()

Return

The method returns one of the following values:

¢ 0—Theowner classis not in this state.
¢ 1—Theowner classisin this state.

serializeStates
Visibility
Public
Description
This method is called during animation to send state information.
Signature

virtual void serializeStates (AOMSState* g) const;

Parameters

]

Specifies the state

330 Frameworks and Operating Systems Reference

OMOrState Class

setSubState
Visibility
Public
Description
This method sets the specified substate.
Signature

virtual void setSubState (OMState* s);

Parameters

S

Specifies the substate

Rational Rhapsody 331

OXF Classes and Methods

OMProtected Class

OVPr ot ect ed isthe base class for protected objects. It embodies a mutex and | ock and
unl ock methods that are automatically embedded within a concrete public method defined
for the object.

Thisclassisdeclared in thefile onpr ot ect ed. h.

Construction Summary
OMProtected Constructs an OVPr ot ect ed object
~OMProtected Destroys the OVPr ot ect ed object
Macro Summary

OMDECLARE_GUARDED

Aggregates OVPr ot ect ed objects inside guarded
classes instead of inheriting from OVPr ot ect ed.

Method Sum

mary

deleteMutex

Deletes t he mutex and sets its value to NULL.

free Is provided for backward compatibility. It calls the
unl ock method.
getGuard Gets the guard object.

initializeMutex

Creates an RTOS mutex, if it has not been created
already.

ock

Locks the mutex of the OVPr ot ect ed object.

unlock

Unlocks the mutex of the OVPr ot ect ed object.

M acros

OMDECLARE_GUARDED

Aggregates OVPr ot ect ed objects inside guarded classes instead of inheriting from

OVPr ot ect ed. It isdefined as follows:

#defi ne OVDECLARE_GUARDED

public:

inline void lock() const {monGuard.|ock();}

inline void unlock() const {momauard. unl ock();}

inline const OWProtected& get Guard() const
{return m ontauard;}

private:

OnPr ot ect ed m onfauar d;

332

Frameworks and Operating Systems Reference

OMProtected Class

OMProtected
Visibility
Public
Description
This method is the constructor for the OVPr ot ect ed object.
Signatures

OVPr ot ect ed()

OMProtected (OMBoolean createMutex)

Parameters

createMutex

A Boolean value that specifies whether to create the RTOS mutex later in the lifetime of the
protected object. If you specify TRUE, the framework creates the mutex by calling the
initializeMutex operation.

Notes
¢ QOWProt ect ed usesthecr eat eOMOSMut ex method to create an OMOSMut ex
object. Initialy, the mutex is free.
¢ creat eOMOSMIt ex isdefined in xxos. cpp.
See Also
~OMProtected

initializeMutex

Rational Rhapsody 333

OXF Classes and Methods

~OMProtected
Visibility
Public
Description

This method is the destructor for the OvPr ot ect ed object. The method del etes (destroys) the
operating system entity that the instance wraps.

Signature

~QOWPr ot ect ed()

See Also

OMProtected

deleteMutex
Visibility
Public
Description
This method deletes the mutex and setsits value to NULL.

Signature

inline void del eteMutex()

free
Visibility
Public
Description
This method is provided for backward compatibility. It callsthe unl ock method.

Note
This method is not defined for OSE RTOSes.

Signature

void free()

334 Frameworks and Operating Systems Reference

OMProtected Class

getGuard
Visibility
Public
Description

This method gets the guard object. This allows uniform handling of guarded classes and
classes the inherit from OVPr ot ect ed.

Signature

inline const OMProtected& getGuard() const

Return

The guard object

initializeMutex
Visibility
Public
Description
This method creates an RTOS mutey, if it has not been created already.
Signature

void initializeMutex()

Rational Rhapsody 335

OXF Classes and Methods

lock
Visibility
Public
Description
This method locks the mutex of the OVPr ot ect ed object.
Signature
inline void lock() const
Notes
The same thread can nest | ock and f r ee calls of the same mutex without blocking itself
indefinitely. This means that OMOSMut ex can implement a recursive mutex (that is, the same
thread can | ock twiceand f r ee twice, but only the outer | ock and f r ee count).
See Also
unlock
unlock
Visibility
Public
Description
This method unlocks the mutex of the OVPr ot ect ed object.
Signature
inline void unlock() const
Notes
The same thread can nest | ock and f r ee calls of the same mutex without blocking itself
indefinitely. This means that OMOSMut ex can implement a recursive mutex (that is, the same
thread can | ock twiceand f r ee twice, but only the outer | ock and f r ee count).
See Also
lock
336 Frameworks and Operating Systems Reference

OMQueue Class

OMQueue Class

The OMQueue class contains basic library functions that enable you to create and manipulate
OMQueues. An OMQueue isatype-safe, dynamically sized queue. It isimplemented on a
cyclic array, and implements a FIFO (first in, first out) algorithm. An OMQueue is
implemented with OMCol | ect i on.

This classis defined in the header file ongueue. h.

Attributes and Collections

m_drow

Specifies whether the queue size can be enlarged

m_head

Specifies the head of the queue

m_m ueue

Specifies the queue implementation

m_tail

Specifies the tail of the queue

Construction Summary

OMQueue Constructs an OMQueue object
~OMQueue Destroys the OMQueue object

Method Summary

get Gets the current element in the queue
getCount Gets the number of elements in the queue

getinverseQueue

Returns the element that will be returned by get () in
the tail of the queue

getQueue Returns the element that will be returned by get () in
the head of the queue

getSize Returns the size of the memory allocated for the queue

increaseHead Increases the size of the queue head

increaseTail Increases the size of the queue tail

iISEmpty Determines whether the queue is empty

isFull Determines whether the queue is full

put Adds an element to the queue

Rational Rhapsody

337

OXF Classes and Methods

Attributesand Collections
m_grow

This Boolean attribute specifies whether the queue size can be enlarged. It is defined as
follows:
OvBool ean m gr ow;

m_head

This attribute specifies the head of the queue. It is defined as follows:
i nt m head;

m_myQueue
This collection specifies the queue implementation. OMQueue isimplemented asacyclic array.

It is defined as follows:
OMCol | ecti on<Concept > m_nmyQueue;

m_tail

This attribute specifies the tail of the queue. It is defined as follows:
int mtail;

338 Frameworks and Operating Systems Reference

OMQueue Class

Example

Consider aclass, Gr aph, that hasabf s() operation that performs BFS search on the graph
nodes to find a node with the specified data. The following figure shows the OMD of the

G aph class.

: Object Model Diagram: Context in OMQueuelsageSample

Graph

=

| v

Graph::Mode

+bfs(const void™ data) const Graph::Mode™

4]

4

nodes

+data ; void *

+addAggregates | *

The following figure shows the browser view of the G- aph class.

Entire: Model View =

E‘EI Sample
El-£3 Components
E-53 Packages
=R J[pEp
= Classes
EE Graph
£l Classes
; EE HNode
E|E Attributes
i Lo data
=B Operations

E-B4 Relations

Lo nodes
£ Operations
o il bfsoonst vaid® data)
110 Felations

i nodes
[=-1 Object Model Diagrams
Z Conbest

Lo adddggregates(OMBueuscMode™s & queue, const O ap<Mode® ints & visited)

Rational Rhapsody

339

OXF Classes and Methods

Thebf s() implementation uses OMQueue as the search container and Ovvap as arecord of

the visited elements.

The following figure shows the implementation of Gr aph: : bf s() .

General Immemenmﬁnnl Properties

Ibfs[cnnst woid®)

PK the gqueue 1s used as the search main container
OMCueue<Node* > searchiueue;

A map of the elements we already visited
OMMap<Node*,int> visited;

SO T A
A do the BFS
SIS
S met the first node of the search
searchiueue. put (nodes[0])

A4 start the search

Node* theNodes = NULL;

while ((thelNodes == NULL) &£& [!searchOusue.isEwptvy(1)) {
HNode® node = searchCueue.get(];
if ['node) continue;

S check & add the node to the wisited list
int duraoy:

if (wvisited.lookUp (node, dumny) '= 0) continue;
visited[node] = 1:
S compare the data
if [(node->getData() == data) §
S Tound

thelNode = node:;
H
else |
FF add the node aggregates to the search gueue
node->addiggregates (searchQueus, vizited) :
H
i
return thelMode:

The following figure shows the implementation of G- aph: : Node: : addAggr egat es() .

General Implementation |Pmpeﬂms|

Iadd&ggregates[DMQueue<N0de">&,cunst Okdbd ap<Mode® int: &)

hnt charreny ;

OMIterator<MNode®> iter (nodes);

for (; *iter; ++iter) {4
Mode* node = *iter:
if (wigited.lookUp (node, dwmery) '= 0) continme; // already visited
queue . put (node) ;

340

Frameworks and Operating Systems Reference

OMQueue Class

OMQueue

Visibility

Public
Description

This method is the constructor for the OMQueue class.
Signature

OMQueue(OVBool ean shoul dGow = TRUE, int initSize = 100);

Parameters

shouldGrow

The value TRUE specifies that you should be able to enlarge the queue as necessary.
initSize
Specifiestheinitial size of the queue.

See Also

~OMQueue

~OMQueue
Visibility
Public
Description
This method destroys the OMQueue object.
Signature

virtual ~OMQueue() {};
See Also

OMQueue

Rational Rhapsody 341

OXF Classes and Methods

get
Visibility
Public
Description
This method gets the current element in the queue.
Signature

virtual Concept get();

Return

The current element in the queue

getCount
Visibility
Public
Description
This method gets the number of elements in the queue.
Signature

int getCount () const

Return

The number of elementsin the queue

342 Frameworks and Operating Systems Reference

OMQueue Class

getinverseQueue
Visibility
Public
Description
This method returns the element that will be returned by get () inthetail of the queue.
Signature

virtual void getInverseQueue (OMList<Concept>& list)
const;

Parameters

list

The element that will be returned by get () in thetail of the queue

getQueue
Visibility
Public
Description
This method returns the element that will be returned by get () in the head of the queue.
Signature
virtual void getQueue (OMList<Concept>& list) const;
Parameters
list

The element returned by aget () in the head of the queue

Rational Rhapsody 343

OXF Classes and Methods

getSize
Visibility
Public
Description
This method returns the size of the memory allocated for the queue.
Signature

virtual int getSize() const

Return

The size of the alocated memory

increaseHead_
Visibility
Public
Description
This method increases the size of the queue head.
Signature

void increaseHead () ;

increaseTail_
Visibility
Public
Description
This method increases the size of the queue tail.
Signature

void increaseTail () ;

344 Frameworks and Operating Systems Reference

OMQueue Class

ISEmpty
Visibility
Public
Description
This method determines whether the queue is empty.
Signature

OMBoolean isEmpty () const

Return

The method returns one of the following Boolean values:

¢ TRUE—The queueis empty.
¢ FALSE—The queue is not empty.

isFull
Visibility
Public
Description
This method determines whether the queueis full.
Signature

OMBoolean isFull() const;

Return
The method returns one of the following Boolean values:

¢ TRUE—The queueisfull.
¢ FALSE—The queueisnot full.

Rational Rhapsody

345

OXF Classes and Methods

put
Visibility
Public
Description
This method adds an element to the queue.
Signature

virtual OMBoolean put (Concept c);

Parameters

(¢}

The element to add to the queue
Return
The method returns one of the following Boolean values:

¢ TRUE—The method was successful.
¢ FALSE—The method failed.

346 Frameworks and Operating Systems Reference

OMReactive Class

OMReactive Class

The OVReact i ve classisthe framework base class for al reactive objects and implements
basic event handling functionality. It isdeclared in the fileonr eact i ve. h.

Reactive objects process events, typically via statecharts or activity diagrams. The primary
interfaces for reactive objects are the gen and takeTrigger methods.

Triggered operations are synchronous events that affect the reactive class state. The generated
code creates an event, then passesiit to the reactive class by calling the takeTrigger method. For
additional information on triggered operations, see Dispatching a Triggered Operation.

Sender objects apply the gen method to send an event to a receiver, which inherits from
OWVReact i ve. The event isthen queued inside athread. See Generating and Queuing an Event.

The execut e method waits on the thread's event queue. When an event is present on the
gueue, it dispatches it to the appropriate OVReact i ve object using the takeTrigger method.
For more information, see Generating and Queuing an Event.

Attribute Summary

active Specifies whether the reactive object (the concrete
object derived from OMReact i ve) is also an active
object

frameworkinstance Specifies whether the reactive object is used by the

framework itself (it is not a user-defined object)

myStartBehaviorEvent Activates an object that has null transitions as part of
the default transition

omrStatus Defines the internal state (as opposed to the user-class
state in the statechart) of the reactive object

toGuardReactive Specifies that the consumption of an event should be
guarded with a mutex (a binary semaphore)

Rational Rhapsody 347

OXF Classes and Methods

Constant Summary

eventConsumed

Specifies that the event has been consumed.

eventNotConsumed

Specifies that the event was completed, but was not
consumed.

OMRDefaultStatus

Specifies the default value for the onr St at us attribute

OMDefaultThread

Defines the default thread for an OVReact i ve object

OMRInDtor

Stops event dispatching

OMRNullConfi

Determines whether null transitions (transitions with no
trigger) need to be taken in the generated code

OMRNullConfigMask

Determines whether an OVReact i ve instance should
take null transitions in the state machine

OMRShouldCompleteStartBeh
avior

Determines whether the entry to the state machine on
the call to startBehavior was completed, and, if not,
whether there are additional null transitions to take

OMRShouldDelete

Determines whether a reactive object should be deleted
by its active object when it reaches a termination
connector in its state machine

OMRShouldTerminate

Allows the safe destruction of a reactive instance by its
active instance

Macro Summary

GEN Generates a new event

GEN_BY_GUI Generates an event from a GUI

GEN_BY_X Generates a new event from a sender object to a
receiver object

GEN_ISR Generates an event from an interrupt service request

(ISR)

Relation Summary

event

Specifies the active or current event (the one that is now
being processed) for the OVReact i ve instance

m_eventGuard

Used, in collaboration with the generated code, to
protect the event consumption from mutual exclusion
between events and triggered operations

myThread Specifies the active class that queues events and
dispatches events (so they are consumed on the active
class’s thread) for a reactive object

rootState Defines the root state of the OVReact i ve statechart

(when the system is using a reusable statechart
implementation)

348

Frameworks and Operating Systems Reference

OMReactive Class

Construction Summary

OMReactive

Constructs an OVReact i ve object

~OMReactive

Destroys the OVReact i ve object

Method Summary

cancelEvents

Cancels all the queued events for the reactive object.

consumeEvent

Is the main event consumption method.

discarnateTimeout

Destroys a timeout object for the reactive object.

doBusy Sets the value of omrStatus to 1 or TRUE.

gen Is used by a sender object to send an event to a
receiver object.

_gen Queues events sent to the reactive object.

getCurrentEvent Gets the currently processed event.

getThread Retrieves the thread associated with a reactive object.

handleEventNotConsumed

Is called when an event is not consumed by the reactive
class.

handleTONotConsumed

Is called when a triggered operation is not consumed by
the reactive class.

incarnateTimeout

Creates a timeout object to be invoked on the reactive
object.

inNullConfig Determines whether an OVReact i ve instance should
take null transitions (transitions without triggers) in the
state machine.

isActive Determines whether a reactive object is also an active
object.

isBusy Returns the current value of the omrStatus attribute.

isCurrentEvent Determines whether the specified ID is the currently

processed event.

isFrameworklInstance

Determines the current value of the
frameworklInstance attribute.

isinDtor Determines whether event dispatching should be
stopped.

isValid Makes sure the reactive class is not deleted.

popNullConfig Decrements the omrStatus attribute after a null

transition is taken.

ushNullConfi

Counts null transitions and increments the onr St at us
attribute after a state is exited.

registerWithOMReactive

Registers a user instance as a reactive class in the
animation framework

rootState_dispatchEvent

Consumes an event inside a real statechart.

rootState_entDef

Initializes the statechart by taking the default transitions.

Rational Rhapsody

349

OXF Classes and Methods

rootState_serializeStates

Is a virtual method that performs the actual event
consumption.

runToCompletion

Takes all the null transitions (if any) that can be taken
after an event has been consumed.

serializeStates

Is called during animation to send state information.

setCompleteStartBehavior

Sets the value of the
OMRShouldCompleteStartBehaviorattribute.

setEventGuard

Is used to set the event guard flag (m_eventGuard).

setFrameworkInstance

Changes the value of the frameworkinstance attribute.

setinDtor

Specifies that event dispatching should be stopped.

setMaxNullSteps

Sets the maximum number of null transitions (those
without a trigger) that can be taken sequentially in the
statechart.

setShouldDelete

Specifies whether a reactive object should be deleted by
its active object when it reaches a termination connector
in its state machine.

setShouldTerminate

Specifies that a reactive instance can be safely
destroyed by its active instance.

setThread

Sets the thread of a reactive object.

setToGuardReactive

Specifies the value of the toGuardReactive attribute.

shouldCompleteRun

Checks the value of omrStatus to determine whether
there are null transitions to take.

shouldCompleteStartBehavior

Checks the start behavior state.

shouldDelete

Determines whether a reactive object should be deleted
by its active object when it reaches a termination
connector in its state machine.

shouldTerminate

Determines whether a reactive instance can be safely
destroyed by its active instance.

startBehavior

Initializes the behavioral mechanism and takes the initial
(default) transitions in the statechart before any events
are processed.

takeEvent Is used by the event loop (within the thread) to make the
reactive object process an event.

takeTrigger Consumes a triggered operation event (synchronous
event).

terminate Sets the OVReact i ve instance to the terminate state
(the statechart is entering a termination connector).

undoBusy Sets the value of the sm_busy attribute to 0 or FALSE.

350

Frameworks and Operating Systems Reference

OMReactive Class

Attributes and Defines
active

This protected attribute specifies whether the reactive object (the concrete object derived from
OVReact i ve) isalso an active abject. An active object createsits own thread and a so inherits
from an OMThr ead object.

The default valueis 0 or FALSE.

If the reactive object is an active object, the user application will call thethread st art ;
otherwise, it will not.

It is defined as follows:

OMBoolean active;

framewor k|l nstance

This protected attribute specifies whether the reactive object is used by the framework itself (it
is not a user-defined object).

The default valueis 0 or FALSE, and is specified by OMReactive, the constructor for areactive
object.

Thef r amewor kI nst ance attribute can be used to model the Rhapsody framework in terms
of itself. The default value is FALSE; you would not normally want to change the default.

It isdefined as follows:

OMBoolean frameworkInstance;

myStartBehavior Event

This protected attribute activates an object that has null transitions as part of the default
transition.

It is defined as follows:

OMStartBehaviorEvent myStartBehaviorEvent;

Rational Rhapsody 351

OXF Classes and Methods

omrSatus

This protected attribute defines the internal state (as opposed to the user-class state in the
statechart) of the reactive object.

The default value is OMRDefaultStatus, and is specified by OMReactive, the constructor for a
reactive object.

It is defined as follows:

long omrStatus;

toGuar dReactive

This protected attribute specifies that the consumption of an event should be guarded with a
mutex (a binary semaphore).

The default valueis 0 or FALSE, and is specified by OMReactive, the constructor for areactive
object. t oGuar dReact i ve is set to TRUE automatically by code generation, based on user
modeling.

It is defined as follows:

OMBoolean toGuardReactive;

Constants

eventConsumed

Specifies that the event was consumed. It is defined as follows:

#define eventConsumed
OMReactive: :OMTakeEventCompleted

eventNotConsumed

Specifies that the event was completed, but was not consumed. It is defined as follows:

#define eventNotConsumed
OMReactive: :OMTakeEventCompletedEventNotConsumed

OMRDefaultStatus
Specifies the default value for the onr St at us attribute. Thisisused by OVReact i ve.
It isdefined as follows:

const long OMRDefaultStatus = 0x00000000L;

352

Frameworks and Operating Systems Reference

OMReactive Class

OMDefaultThread

Defines the default thread for an OvReact i ve object. The default valueis0 or NULL, which
tellsthe OVReact i ve object to processits events on the system default active class.

It is defined as follows:

#define OMDefaultThread 0
OMRInDtor

Used to set and get the OVReact i ve internal state stored in omrStatus. It isused in
conjunction with omrStatus to stop event dispatching.

OMRI nDt or does not provide protection from mutual exclusion (an attempt to dispatch an
event to aclass deleted on another thread). If you want to provide mutual exclusion protection,
refer to the Rhapsody code generation documentation.

It is defined as follows:

const long OMRInDtor = 0x00020000L;
OMRNullConfig
Used to get and set the OVReact i ve internal state stored inonr St at us. Itisusedin

conjunction with omrStatus to determine whether null transitions (transitions with no trigger)
need to be taken in the generated code.

It isdefined as follows:

const long OMRNullConfig = 0x00000001L;
OMRNullConfigM ask

Used to get and set the OVReact i ve internal state stored inonr St at us. Itisusedin
conjunction with omrStatus to determine whether an OVReact i ve instance should take null
transitions in the state machine.

It is defined as follows:

const long OMRNullConfigMask = O0x0000FFFFL;
OMRShouldCompleteStartBehavior

Used to get and set the OVReact i ve internal state stored inonr St at us. Itisusedin
conjunction with onr St at us to determine whether the entry to the state machine on the call
to startBehavior was completed, and, if not, whether there are additional null transitions to
take.

This bit is set by the startBehavior method if the shouldCompleteRun method returns an
omrStatus of TRUE.

Rational Rhapsody 353

OXF Classes and Methods

This bit is reset by the consumeEvent method on the first event.
It is defined as follows:

const long OMRShouldCompleteStartBehavior =
0x00080000L;

OMRShouldD€elete

Used to get and set the OVReact i ve state stored in onr St at us. Itisused in conjunction with
omrStatus to determine whether a reactive object should be deleted by its active object when it
reaches a termination connector in its state machine. This permits statically allocated objects
to have a termination connector in their state machine.

It isdefined as follows:

const long OMRShouldDelete = 0x00040000L;
OMRShouldTerminate

Used to get and set the OVReact i ve internal state stored inonr St at us. Itisusedin
conjunction with onr St at us to allow the safe destruction of areactive instance by its active
instance.

It is defined as follows:

const long OMRShouldTerminate = 0x00010000L;

Macros
GEN

Generates anew event. The GEN macro uses the gen method, then calls the new operator to
create anew event.

The macro is defined as follows:

#define GEN (event) gen (new event)

GEN_BY_GUI

Generates an event from a GUI. The GEN_BY_GUI macro uses the gen method, then calls the
new operator to create a new event. OMcui specifies the GUI thread.

The macro is defined as follows:

#define GEN_BY GUI (event) gen ((OMEventx*)
(new event), OMGui)

Ovaui isdefined in aoxf . h.

354 Frameworks and Operating Systems Reference

OMReactive Class

GEN_BY_X

Generates a new event from a sender object to areceiver abject. It specifies asender and is
typically used to generate events from external elements, such asa GUI. The GEN_BY_X
macro uses the gen method, then calls the new operator (with the sender as a parameter) to
create anew event.

The macro is defined as follows

#define GEN BY X (event, sender) gen (new event,
sender)

GEN_ISR

Generates an event from an interrupt service request (ISR). The GEN_| SR macro uses the gen
method with the genFr oml SR parameter specified as TRUE to create anew event from an ISR.

It isthe user’s responsibility to allocate the event; GEN_I SRitself does not allocate the event.
The macrosis defined as follows:

#define GEN_ISR (event) gen (event, TRUE)

For VxWorks, GEN_| SR generates an event with urgent priority that is placed at the head of
the event queue. If another event from GEN_| SR occurs before the first one has been
processed, it will be placed in front of the previous event. The implementation of GEN_I SRfor
V xWorks was aimed to address a use case where areactive object hasaflow of “plain” events,
and fromtimeto timeit getsasingle, high-priority event that is placed at the front of the queue
for immediate consumption.

If aburst of GEN_| SR events are being injected into the system, you can comment out the
setting of the priority in the framework to treat events from interrupts with equal priority. In
OvBool ean VxOSMessageQueue: : put (voi d* m OwvBool ean from SR), comment out
thelinepriority = MSG_PRI _URGENT.

Relations
event

This public relation specifies the active or current event (the one that is now being processed)
for the OVReact i ve instance. The relation is assigned only when an event is taken from the
event queue.

The default valueis NULL, and is specified by OMReactive, the constructor for areactive
object.

Therelation is defined as follows:

OMEvent *event;

Rational Rhapsody 355

OXF Classes and Methods

m_eventGuard

Used, in collaboration with the generated code, to protect the event consumption from mutual
exclusion between events and triggered operations.

If auser reactive class has a guarded triggered operation, this relation will be set to the
OVPr ot ect ed part of the reactive class, and thet akeEvent method will lock the guard
before calling consunmeEvent .

It isdefined as follows:

const OMProtected * m _eventGuard;

myThread

This protected relation specifies the active class that queues events and dispatches events (so
they are consumed on the active class's thread) for a reactive object.

There is a one-way relationship between athread and a reactive class. The thread does not
know its reactive class—it might have many. However, the reactive class has arelation to its
thread, specified by my Thr ead.

Therelation is defined as follows:

OMThread *myThread;

rootSate

This relation defines the root state of the OVReact i ve statechart (when the system isusing a
reusable statechart implementation).

The default valueisNULL, and is specified by OVReact i ve, the constructor for areactive
object.

It isdefined as follows:

OMComponentState* rootState;

The OMConponent St at e classisdefined in st at e. h.

356 Frameworks and Operating Systems Reference

OMReactive Class

OMReactive
Visibility
Public
Description
The OVReact i ve method is the constructor for the OVReact i ve class.
Signature

OVReact i ve(OMrhr ead *pt hread = OMDefaultThread) ;

Parameters

pthread

Defines the thread on which events for the OVReact i ve instance are processed. The default
value is OMDefaultThread, which is set to the system default active class.

Composite classes use this parameter to inherit threads to components.
See Also

OMDefaultThread

~OMReactive

~OMReactive
Visibility
Public
Description
The ~OVReact i ve method is the destructor for the OVReact i ve class.
Signature

virtual ~OVReactive();

See Also

OMReactive

Rational Rhapsody 357

OXF Classes and Methods

cancelEvents

Visibility

Public
Description

Thecancel Event s method cancels all the queued eventsfor the reactive object. This method
is called upon destruction of the reactive object to prevent the thread from sending additional
events to a destroyed object.

Signature

voi d cancel Events();

Notes
+ If there are severa eventsin the event queue targeted for an OVReact i ve
instance, but the instance has already been destroyed because it reached a
termination connector in the statechart, the framework usesthe cancel Event s
method to cancel the events.
¢ cancel Event s callsthe OMThr ead: :cancelEvents method.
See Also

cancelEvents

consumeEvent
Visibility
Public
Description

The consuneEvent method isthe main event consumption method. It handles the passing of
events and triggered operations from the framework to the user-defined statechart, which then
consumes them. This method is called by thet akeEvent andt akeTri gger methods.

You can override consumeEvent to specialize different event consumption behaviors:

+ Create areactive class that consumes events without a statechart.
¢ Add functionality to a class's event consumption.

Signature

virtual TakeEvent Status consunmeEvent (OVEvent* ev);

358 Frameworks and Operating Systems Reference

OMReactive Class

Parameters

ev

Specifies the event to be consumed
Return

The method returns one of the values defined in the TakeEvent St at us enumerated type.
You can use these val ues to determine whether and how to continue with event processing on
the reactive object.

The possible values are as follows:

¢ OMrakeEvent Conpl et edEvent Not Consuned (0) —The event was
completed, but not consumed.

¢ OMrakeEvent Conpl et ed (1) —The event was completed. Thisis the normal
status.

¢ OMrakeEvent I nDt or (2) —The event was not completed because the
OVReact i ve instanceisin destruction.

¢ OMrakeEvent ReachTer mi nat e (3) —The event was not completed because
the statechart has reached a termination connector and the reactive object should
be destroyed.

Note

The consumeEvent method includes the ability to handle events and triggered operations
that were not consumed. Thisis conceptually a callback method that you must override to
define the actual handling of unconsumed events. To support this modification, the method
signature was changed.

See Also

takeEvent

takeTrigger

Rational Rhapsody 359

OXF Classes and Methods

discarnateTimeout
Visibility
Public
Description

Thedi scar nat eTi neout method is used by the framework to destroy atimeout object for
the reactive object.

Signature
virtual void di scarnateTi meout (OMIi meout * tm;

Parameters

tm

Specifies the timeout to be destroyed
See Also

undoBusy

360 Frameworks and Operating Systems Reference

OMReactive Class

doBusy
Visibility
Public
Description

The doBusy method sets the value of omrStatus to 1 or TRUE. It is caled by the
root St at e_di spat chEvent method.

Signature

voi d doBusy()

Notes

TheundoBusy method returnsthe current value of omrStatus and setsthe value of sm busy to
0 or FALSE.

See Also
isBus
omrStatus

rootState_dispatchEvent

undoBusy

gen
Visibility
Public
Description

The gen method is an overloaded public method used by a sender object to send an event to a
receiver object. gen first checks to see whether the receiver object is under destruction.

In uninstrumented code, the call gen(OMEvent) isaways sufficient. The call isalso
sufficient in instrumented code when you include the not i f yCont ext Swi t ch method.

Multi-thread instrumented applications should use the call
gen(OVEvent * event, voi d* sender). If thesender isa GUI element, use the syntax
gen(theEvent, OMGAUl).OMGui isdefinedinthefileaoxf. h.

Rational Rhapsody 361

OXF Classes and Methods

Signatures

vi rtual OMBool ean gen (OVEvent *event,
OvBool ean genFrom SR = FALSE);

virtual OMBoolean gen (OMEvent *event, void * sender) ;

void gen (AOMEvent *theEvent, void * sender)

Parametersfor Signature 1

event

Specifies a pointer to the event to be sent to the reactive object.

genFromISR

Indicates whether the event is from an operating system interrupt service request (ISR). If it is,
it requires special treatment.

Parametersfor Signature 2

event

Specifies the event to send

sender

Specifies the object sending the event
Parametersfor Signature 3

theEvent

Specifies the event to send

sender

Specifies the object sending the event
Return
The method returns one of the following Boolean values:

¢ TRUE—The event was successfully queued.
¢ FALSE—The event was not queued.

Notes

¢ Thegen method istypically used within actions and methods that you write.
+ Note the following distinctions between the different method calls:

362 Frameworks and Operating Systems Reference

OMReactive Class

+ Thefirst method syntax does not specify asender. gen first checksto see whether
the receiver object is under destruction.

¢ Thisversion of the method is expanded by the following macros:
— GUARD_OPERATION—Creates the event
— GEN_BY_GUI—Generates an event requested by a GUI
— GEN_ISR—Generates an event from an ISR

¢ The second version of the method is used to send events from external elements,
such asa GUI. It registersthe “top” of the call stack asits sender.

¢ Thisversion of the method is expanded by the
START_THREAD_GUARDED_SECTION macro, which also creates the event.

— ThegenFr om SRflag supports RTOSes (for example, VxWorks) that have
restrictions on resource usage (for example, no memory allocation or waiting
on semaphores) during an ISR.

— To extend framework customization, the gen method was set to virtual in
Version 3.0.

See Also
_gen
GEN_BY_GUI
GEN_ISR
GUARD_OPERATION

START_THREAD_GUARDED_SECTION

Rational Rhapsody 363

OXF Classes and Methods

_gen
Visibility
Public

Description
The _gen method queues events sent to the reactive object.

_gen works in the following way:

¢ Fird, it setsthe destination for the event by calling the setDestination method.

+ Next, it calsthe gueueEvent method to queue the event in the OMThr ead event
gueue assigned to this OVReact i ve instance.

Signature

vi rtual OVBool ean _gen (OVEvent *event,
OvBool ean genFrom SR = FALSE);

Parameters

event

Specifies a pointer to the event to be sent to the reactive object.

genFromISR

Indicates whether the event is from an operating system interrupt service request (ISR). If it is,
it requires special treatment.

Return
The method returns one of the following Boolean values:

¢ TRUE—The event was successfully queued.
¢ FALSE—The event was not queued.

Notes

+ Theevent consumption isasynchronous. _gen causes the event to beinserted into
an OMThr ead event queue—the reactive object does not have to respond to the
event immediately.

+ ThegenFronl SR flag supports RTOSes (for example, VxWorks) that have
restrictions on resource usage (for example no memory allocation or waiting on
semaphores) during an ISR.

+ To extend framework customization, the _gen method was set to virtual .

364 Frameworks and Operating Systems Reference

OMReactive Class

getCurrentEvent
Visibility
Public
Description
This method gets the currently processed event.
Signature

inline const OMEvent* getCurrentEvent () const

Return
The ID of the current event
See Also

isCurrentEvent

getThread
Visibility
Public
Description

This method is an accessor function used to retrieve the thread associated with a reactive
object. Thismethod is called by the act i on method.

Signature

OMThr ead *get Thread()

Return

The thread associated with the reactive object
See Also

action

setThread

Rational Rhapsody 365

OXF Classes and Methods

handleEventNotConsumed

Visibility

Public

Description

This method isavirtual method called when an event is not consumed by the reactive class. To
handle an unconsumed event, you must override this method.

This method is part of the framework for handling unconsumed events.

Signature

virtual void handleEventNotConsumed (OMEvent* event) ;

Parameters

event

Specifies the event
See Also

handleTONotConsumed

366

Frameworks and Operating Systems Reference

OMReactive Class

handleTONotConsumed
Visibility
Public
Description

This method is avirtual method called when atriggered operation is not consumed by the
reactive class. To handle an unconsumed triggered operation, you must override this method.

This method is part of the framework for handling unconsumed triggered operations.
Signature

virtual void handleTONotConsumed (OMEvent* event) ;

Parameters

event

Specifies the triggered operation
See Also

handleEventNotConsumed

Rational Rhapsody 367

OXF Classes and Methods

incarnateTimeout
Visibility
Public
Description

This method is used by the framework to create a timeout object to be invoked on the reactive
object. It iscalled by the schedTm method.

Signature

vi rtual OMi nmeout *incarnateTi neout (short id,
ti meUnit delay, const OvHandl e* theState);

Parameters
id

Identifies the timeout, either at delivery or for canceling. Every timeout has a specifici d so it
can be distinguished from other timeouts.

delay
Specifies the delay time, in milliseconds, before the timeout is triggered.

theState

Is used by the Rhapsody animation to designate the state name upon which the timeout is
scheduled. Thereis no default value.

See Also

discarnateTimeout

schedTm

368 Frameworks and Operating Systems Reference

OMReactive Class

inNullConfig
Visibility
Public
Description

This method determines whether an OVReact i ve instance should take null transitions
(transitions without triggers) in the state machine.

Signature

I ong inNull Config() const
Return

The method returns omrStatus and OMCancelledEventid. If thisvalueis 0, there are no null
transitions. If this value is greater than 0, the value specifies the number of null transitions to
take.

Notes

The omrStatus attribute specifies the maximum number of null transitions that are allowed.
The default value is 100.

See Also
opNullConfi

pushNullConfig

Rational Rhapsody 369

OXF Classes and Methods

ISActive
Visibility
Public
Description
This method determines whether a reactive object is also an active object.
Signature

OVBool ean i sActive()

Return
The method returns one of the following Boolean values:

¢ TRUE—The reactive object is also an active object.
¢ FALSE—The reactive object is not an active object.

iIsBusy
Visibility
Public
Description

This method returns the current value of the omrsStatus attribute. It is called by the
root St at e_di spat chEvent method.

Signature

int isBusy() const

Return
The method returns one of the following integers:

¢ 1—Theobject iscurrently consuming an event.
¢ 0—Theobjectisidle.

Notes

The doBusy method sets the value of sm busy to 1 or TRUE; the undoBusy method sets the
value of sm busy to 0 or FALSE.

370 Frameworks and Operating Systems Reference

OMReactive Class

Rhapsody applies a safety mechanism to the flat statechart implementation that prevents self-
directed trigger operations. If Rhapsody finds this condition, it simply ignores the invocation.

To omit the safety, you can override OVReact i ve: : consumeEvent() inthe user class code
(this omits the check of i sBusy() but does not modify the framework code. However, this
can make the behavior unpredictable. The handleEventNotConsumed Or
handleTONotConsumed Operations provide more predictable results.

See Also

doBusy

handleEventNotConsumed

handleTONotConsumed

omrStatus

rootState_dispatchEvent

undoBusy

iIsCurrentEvent
Visibility
Public
Description
This method determines whether the specified event ID matches the currently processed event.
Signature

OMBoolean IsCurrentEvent (short eventId) const;

Parameters

eventId

The event ID to check
Return
The method returns one of the following Boolean values:

¢ TRUE—The specified event is the current event.
¢ FALSE—The specified event is not the current event.

Rational Rhapsody 371

OXF Classes and Methods

See Also

getCurrentEvent

iIsFrameworklnstance

Visibility
Public
Description

The isErameworkinstance method determines the current value of the frameworkinstance
attribute.

Signature

OVBool ean i sFranmewor kl nst ance() const

Return
The method returns one of the following Boolean values:

¢ TRUE—The reactive object is used by the framework itself.

¢ FALSE—Therreactive object is not used by the framework; it is a user-defined
object. Thisisthe default value.

Notes

Thef r amewor kI nst ance attribute can be used to model the Rhapsody framework in terms
of itself. The default value is FALSE; you would not normally want to change the default.

See Also

setFrameworkinstance

372

Frameworks and Operating Systems Reference

OMReactive Class

isinDtor
Visibility
Public
Description

This method determines whether event dispatching should be stopped. It is caled by the
consuneEvent andr oot St at e_di spat chEvent methods.

Signature

unsi gned char islnDtor() const

Return

If the return value is 0, the abject is not under destruction. If the value is greater than 0, the
object is under destruction.

See Also
consumeEvent

rootState_dispatchEvent

setinDtor

isValid
Visibility
Public
Description
This method makes sure the reactive class is not deleted. This method is used by animation.
Signature

static OMBoolean isValid (const OMReactivex*
const p_reactive);

Parameters

p_reactive

Specifies the reactive class

Rational Rhapsody 373

OXF Classes and Methods

Return

The method returns TRUE if the reactive classis valid; FALSE if the class has been deleted.

Note
The method jsvalid supersedes the method i sVal i dOVReact i ve.

popNullConfig
Visibility
Public
Description
This method decrements the omrStatus attribute after a null transition is taken.
Signature

voi d popNul | Config();

Notes

The omrStatus attribute specifies the maximum number of null transitions that are allowed.
The default valueis 100.

See Also

inNullConfig

omrStatus

pushNullConfig

374 Frameworks and Operating Systems Reference

OMReactive Class

pushNullConfig
Visibility
Public
Description

This method counts null transitions. After a state is exited on anull transition,
pushNul | Confi g increments the omrStatus attribute.

Signature
voi d pushNul | Config();

Notes

The omrStatus attribute specifies the maximum number of null transitions that are allowed.
The default value is 100.

See Also

inNullConfig

omrStatus

popNullConfig

registerWithOMReactive
Visibility
Public
Description

This method registers a user instance as a reactive class in the animation framework. This
method is used for animation support.

Signature

void registerWithOMReactive (void* myReal,
AOMInstance *theAOMInstance)

Parameters

myReal
The user instance

theAOMInstance

Rational Rhapsody 375

OXF Classes and Methods

The animation instance that reflects the user instance

rootState_dispatchEvent

Visibility
Public

Description

This method is responsible for consuming an event inside areal statechart. It is called by the
consumeEvent method.

Signature

virtual int rootState_dispatchEvent (short id);

Parameters
id
Specifiesthe ID of the event being consumed
Return

The method returns one of the following values:

¢ 0—The method did not consume the event.
¢ 1—The method consumed the event.

Notes

OVReact i ve has an implementation for ther oot St at e_di spat chEvent and undoBusy
methods. For flat statechart implementation, every class that inherits from OVReact i ve
overwrites these methods according to its specific statechart implementation. For reusable
statechart implementation, these methods are used as-is.

The Rhapsody framework “knows’ nothing about the real statechart; it knows about the

root St at e_ent Def andr oot St at e_di spat chEvent methods only. Every concrete class
knows how to react to every event because it has generated code for itself. Therefore, for flat
statechart implementation, the concrete class overwrites these two virtual methods with its
own customized implementation.

Flat statecharts are constructed using swi t ch and i f statements.They are more efficient in
both time and space, and offer a customized implementation. Reusable statecharts are
constructed using objects, and provide typical object-oriented features (for example,
inheritance, encapsulation, and polymorphism). They offer a generic implementation. The
Rhapsody default isflat statecharts.

376

Frameworks and Operating Systems Reference

OMReactive Class

In areusable statechart implementation, r oot st at e_di spat chEvent invokesthe root state
takeTrigger operation.

See Also
consumeEvent

rootState_dispatchEvent

rootState_entDef

rootState entDef
Visibility
Public

Description
This method initializes the statechart by taking the default transitions.
Signature

virtual void rootState_entDef();

Notes

OVReact i ve hasan implementation for ther oot St at e_ent Def and undoBusy methods.
For flat statechart implementation, every class that inherits from OVReact i ve overwrites
these methods according to its specific statechart implementation. For reusabl e statechart
implementation, these methods are used as-is.

The Rhapsody framework “knows’ nothing about the real statechart; it knows only about the
root St at e_di spat chEvent andr oot St at e_ent Def methods. Every concrete class
knows how to react to every event because it has generated code for itself. Therefore, for flat
statechart implementation, the concrete class overwrites these two virtual methods with its
own customized implementation.

Flat statecharts are constructed using swi t ch and i f statements.They are more efficient in
both time and space, and offer a customized implementation. Reusable statecharts are
constructed using objects, and provide typical object-oriented features (for example,
inheritance, encapsulation, and polymorphism). They offer a generic implementation. The
Rhapsody default is flat statecharts.

See Also

rootState_dispatchEvent

rootState_entDef

Rational Rhapsody 377

OXF Classes and Methods

rootState_serializeStates
Visibility
Public
Description
This method is a virtual method that performs the actual event consumption.

In aflat statechart implementation, this method is not called, and the user class overrideis
called instead.

In areusable statechart implementation, this method calls the root state'st akeEvent method
to consume the event. The root state is a user class derived from St at e.

Signature

void rootState serializeStates (AOMSState* aomsState)
const;

Parameters

aomsState

Specifies the root state

378 Frameworks and Operating Systems Reference

OMReactive Class

runToCompletion
Visibility
Public
Description

This method takes al the null transitions (if any) that can be taken after an event has been
consumed. In normal designs, this should not take more than several steps, so thereis a safety
limit that protects against infinite loops (considered to be design errors).

TheconsuneEvent method callsr unToConpl et i on.
For more information, see onr eact i ve. cpp.
Signature

voi d runToConpl etion();
See Also

consumeEvent

shouldCompleteRun

serializeStates
Visibility
Public
Description
This method is called during animation to send state information.
Signature

void serializeStates (AOMSState* s) const;

Parameters

S

Specifies the state

Rational Rhapsody 379

OXF Classes and Methods

setCompleteStartBehavior
Visibility
Public
Description

This method sets the value of the OMRShouldCompleteStartBehavior attribute.

Signature
void setCompleteStartBehavior (OMBoolean b)
Parameters

b

Specifies whether the entry to the state machine on the call to startBehavior was compl eted,
and, if not, if there are additional null transitions to take

See Also

OMRShouldCompleteStartBehavior

omrStatus

setEventGuard
Visibility
Public
Description
This method is used to set the event guard flag (m_eventGuard).
Signatures

inline void setEventGuard (const OWProtected* event Guard)

inline void setEvent Guard (const OWProtected& event Guard)

Parameters

eventGuard

Specifies the protected part of the reactive instance used to guard the event loop from mutual
exclusion between events and triggered operation consumption

380 Frameworks and Operating Systems Reference

OMReactive Class

setFrameworklInstance
Visibility
Public
Description

This method changes the value of the frameworkinstance attribute.

Signature

voi d set Franewor kl nst ance(OMBool ean i s)
Parameters
is
Specifiesthe value for the f r amewor kil nst ance attribute. The possible values are as
follows:
¢ TRUE—The framework uses the instance.
¢ FALSE—The framework does not use the instance.

Note

Thef r amewor ki nst ance attribute can be used to model the Rhapsody framework in
terms of itself. The default value is FALSE; you would not normally want to change the
default.

See Also

frameworklInstance

isFrameworklInstance

Rational Rhapsody 381

OXF Classes and Methods

setinDtor
Visibility
Public
Description

Thismethod is called by the OvReact i ve instanceto specify that event dispatching should be
stopped.

Signature

voi d setlnDtor()

See Also
isinDtor
OMRInDtor

omrStatus

setMaxNullSteps
Visibility
Public
Description

This method sets the maximum number of null transitions (those without a trigger) that can be
taken sequentially in the statechart. If omrStatus is exceeded, event consumption is aborted.

The default valueisdefined inonr eact i ve. cpp asfollows:
#define QVDEFAULT_MAX NULL_STEPS 100

Signature

static void set MaxNul | Steps (int newvax)

Parameters

newMax

Specifies the new value for maxNul | St eps
Notes

¢ The pushNullConfig method increments the omrStatus attribute after a state that
has anull transition state is exited.

382 Frameworks and Operating Systems Reference

OMReactive Class

¢+ ThepopNullConfig method decrements the omrStatus attribute after anull
transition is taken.

See Also
omrStatus
popNullConfig

pushNullConfig

setShouldDelete

Visibility
Public
Description

This method specifies whether a reactive object should be deleted by its active object when it
reaches atermination connector in its state machine. This permits statically allocated objects
to have a termination connector in their state machine.

This method is called by OMReact i ve, the constructor for areactive object.

Signature

voi d set Shoul dDel et e (OvBool ean b)

Parameters

b
If thisis TRUE, the OVReact i ve instance is deleted. Otherwise, it is not deleted.

By default, this value is TRUE. To statically alocate a reactive object with atermination
connector, you must explicitly call set Shoul dDel et e(FALSE) .

See Also

OMRShouldDelete

omrStatus

shouldDelete

Rational Rhapsody 383

OXF Classes and Methods

setShouldTerminate
Visibility
Public
Description
This method specifies that a reactive instance can be safely destroyed by its active instance.
Signature

voi d set Shoul dTerm nate (OvBool ean b)

Parameters

b
Set thisto TRUE to terminate the OVReact i ve instance. Otherwise, set thisto FALSE.

See Also

OMRShouldTerminate

omrStatus
shouldTerminate

terminate

384 Frameworks and Operating Systems Reference

OMReactive Class

setThread
Visibility
Public
Description

This method isamutator function that sets the thread of areactive object. It isan alternate way
to set the thread instead of providing it in the reactive object’s constructor.

This method is called by OMReact i ve, the constructor for areactive object.

Note

Calling set Thr ead out of the object CTOR is dangerous on systems where reactive objects
can be deleted, because the events in the queue of the old thread will not be canceled upon
the destruction of the reactive object.

Signature

virtual void setThread (OMrhread *t,
OVBool ean active = FALSE);

Parameters

t
Specifies the thread to be set

active

Signalsthe reactiveinstance that it is also active (the user object also inherits from OMThr ead)

See Also

getThread

OMReactive

Rational Rhapsody 385

OXF Classes and Methods

setToGuardReactive

Visibility
Public
Description

This method specifies the value of the toGuardReactive attribute. If toGuardReactive iS Set to
TRUE, event consumption is guarded.

Note

You need to guard event consumption in order to protect the reactive object from being
deleted by another thread whileit is consuming an event.

Signature

voi d set ToGuar dReact i ve(OvBool ean fl ag);

Parameters

flag
Specifies the value of the reactive event consumption flag. The possible values are as follows:

¢ TRUE—Thereactive event consumption should be guarded.
¢ FALSE—The reactive event consumption should not be guarded.

See Also

toGuardReactive

386

Frameworks and Operating Systems Reference

OMReactive Class

shouldCompleteRun
Visibility
Public
Description

This method checks the value of omrStatus to determine whether there are null transitions to
take. It is caled by the consunmeEvent method.

Signature
| ong shoul dConpl et eRun() const
Return
A | ong that represents the value of omrStatus
Notes

The runToCompletion method is used to take all the null transitions (if any) that can be taken
after an event has been consumed.

See Also
consumeEvent
omrStatus

runToCompletion

setEventGuard

Rational Rhapsody 387

OXF Classes and Methods

shouldCompleteStartBehavior
Visibility
Public
Description
This method checks the start behavior state.

When the user code callsthe st ar t Behavi or method of areactive class, the class takes the
default transition of the statechart. If there are null transitions immediately after the default
transition, the reactive class sends a special event (OMStartBehaviorEvent) to itself, and
changesiits state accordingly. The shouldCompleteStartBehavior method checks the value of
this state.

Signature

long shouldCompleteStartBehavior () const

Return

A | ong that represents the state

388 Frameworks and Operating Systems Reference

OMReactive Class

shouldDelete

Visibility
Public
Description

This method determines whether a reactive object should be deleted by its active object when
it reaches a termination connector in its state machine. This method is called by the
consuneEvent andt akeTri gger methods.

Signature
OvBool ean shoul dDel et e() const

Return
The method returns one of the following Boolean values:

¢ TRUE—The framework should delete the object after it reaches atermination
connector.

¢ FALSE—The framework should not attempt to delete the object.
See Also
consumeEvent

setShouldDelete

takeTrigger

Rational Rhapsody 389

OXF Classes and Methods

shouldTerminate
Visibility
Public
Description

This method determines whether a reactive instance can be safely destroyed by its active
instance. This method is called by the consunmeEvent andt akeTri gger methods.

Signature
I ong shoul dTerni nate() const
Return

The method returns onr St at us & OVRShoul dTer mi nat e. If thisvaueis0, the object
should not terminate. If the value is greater than 0, the object should terminate.

See Also
consumeEvent

setShouldTerminate

takeTrigger

terminate

390 Frameworks and Operating Systems Reference

OMReactive Class

startBehavior
Visibility
Public
Description

This method initializes the behavioral mechanism and takes the initial (default) transitionsin
the statechart before any events are processed. After this call is completed, the statechart is set
to theinitial configuration.

Notethat st ar t Behavi or iscalled on the thread that creates the reactive object; default
transitions are taken on the creator thread.

Note
Do not call st art Behavi or within the class CTOR.

Signature

vi rtual OMBool ean startBehavior();

Return
The method returns one of the following values:

¢ TRUE—The behavior initialization succeeded.
¢ FALSE—The behavior initialization failed.

Notes

+ |f you manually declare an instance (in user code), it is your responsibility to
explicitly invoke st ar t Behavi or ; otherwise, the object will not respond to
events.

¢ Thest art Behavi or method executes on the thread that invoked it (if the class
isan active class, thisis not the class's thread).

¢ Thest art Behavi or method involves execution of actions, and in esoteric cases
might result in the destruction of an instance.

Rational Rhapsody 391

OXF Classes and Methods

takeEvent
Visibility

Public

Description

This method is used by the event loop (within the thread) to make the reactive object process
an event. After some preliminary processing, thet akeEvent method calls consumeEvent to
consume the event. Thisisavirtua function and can be overridden.

Signature

vi rtual TakeEvent Status takeEvent (OVEvent* ev);

Parameters

ev

Specifies the event to be processed

Return

The method returns one of the values defined in the TakeEvent St at us enumerated type.
You can use these values to determine whether and how to continue with event processing on
the reactive object. The possible values are as follows:

*

OMTakeEvent Conpl et edEvent Not Consuned (0) —The event was
completed, but not consumed.

OMTrakeEvent Conpl et ed (1) —The event was completed (normal status).

OMTrakeEvent | nDt or (2) —The event was not completed because the
OVReact i ve instanceisin destruction.

OMTrakeEvent ReachTer mi nat e (3) —The event was not completed because
the statechart reached a termination connector and the reactive object should be
destroyed.

Notes
¢ Thismethod is used by the framework. Typically, you do not use it unless you
want to rewrite the event consumption.
¢ Theexecute method callst akeEvent to process the reactive object an event.
See Also
consumeEvent
execute

392

Frameworks and Operating Systems Reference

OMReactive Class

takeTrigger
Visibility
Public
Description

This method consumes a triggered operation event (synchronous event). Thisisavirtua
function and can be overridden. Thet akeTr i gger method worksin the following way:

1. First, it calsthe consumeEvent method to consume the event.

2. Next, it callsthe shouldTerminate and setShouldDelete methods. If
(shoul dTermi nate() && shoul dDel ete()) isl (or TRUE), t akeTri gger deletes
the event.

Signature

virtual void takeTrigger (OVEvent* ev);

Parameters

ev

Specifies the triggered event

Notes

A triggered operation is a synchronous event—the event is sent to the OVReact i ve instance
and consumed immediately. Most statechart events are asynchronous—the event is sent to the
OVReact i ve instance, but is not necessarily consumed immediately.

See Also
consumeEvent
setShouldDelete
shouldDelete

shouldTerminate

Rational Rhapsody 393

OXF Classes and Methods

terminate
Visibility
Public
Description

This method sets the OVReact i ve instance to the terminate state (the statechart is entering a
termination connector).

Signature
void term nate (const char* ¢ = "");

Parameters

(¢}

Set to an empty string (""). This parameter is used for animation purposes.
See Also

setShouldTerminate

shouldTerminate

394 Frameworks and Operating Systems Reference

OMReactive Class

undoBusy
Visibility
Public
Description

This method sets the value of the sm busy attribute to 0 or FALSE. It is called by the
root St at e_di spat chEvent method.

Signature
voi d undoBusy()

Notes

¢ TheundoBusy method returns the current value of omrStatus.
¢ TheundoBusy method setsthe value of sm busy to 1 or TRUE.

See Also
doBusy
isBus

omrStatus

rootState_dispatchEvent

Rational Rhapsody 395

OXF Classes and Methods

OMStack Class

The OBt ack class contains basic library functions that enable you to create and manipulate
OvBt acks. An OVBt ack isatype-safe stack that implementsa LIFO (last in, first out)
agorithm.

This classis defined in the header file onst ack. h.

Construction Summary

OMStack Constructs an OVBt ack object

~OMStack Destroys the OMSt ack object

Method Summary

getCount Gets the number of items on the stack
isEmpty Determines whether the stack is empty
pop Pops an item off the stack
push Pushes an item onto the stack
top Moves the iterator to the first item in the stack
OMStack
Visibility
Public
Description

This method is the constructor for the OVst ack class.
Signature

OMStack ()

See Also

~OMStack

396 Frameworks and Operating Systems Reference

OMStack Class

~OMStack
Visibility
Public
Description
This method destroys the Ovist ack object.
Signature

~OMStack ()

See Also

OMStack

getCount
Visibility
Public

Description

This method gets the number of items in the stack.

Signature

int getCount () const

Return

The number of itemsin the stack

Rational Rhapsody

397

OXF Classes and Methods

ISEmpty
Visibility
Public
Description
This method determines whether the stack is empty.
Signature

int isEmpty () const

Return
The method returns one of the following values:

¢ 0—The stack is not empty.
¢ 1—Thestack isempty.

pop
Visibility
Public
Description
This method pops the next item off the stack.
Signature

Concept pop ()

Return

The item popped off the stack

398 Frameworks and Operating Systems Reference

OMStack Class

push

top

Visibility

Public
Description

This method pushes an item onto the stack.
Signature

void push (Concept p)

Parameters

p
Theitem to add to the stack

Visibility
Public

Description

This method moves the iterator to the first item in the stack.

Signature

Concepté& top ()

Return

Thefirst item on the stack

Rational Rhapsody

399

OXF Classes and Methods

OMStartBehaviorEvent Class

The Ovst ar t Behavi or Event classis used to handle the special case when areactive class

injects eventsto itself, and the startBehavior method has null transitions that should be taken
after the default transition.

Using this class, you can execute the null transitions in the context of the reactive thread,
instead of in the context of the thread that called startBehavior.

Animating Start Behavior

The friend class, OVFr i endSt ar t Behavi or Event , animates the start behavior event class

in instrumented mode. The friend class declaration is empty except for non-instrumented
mode.

These classes are defined in the header fileevent . h.

Construction Summary

OMStartBehaviorEvent Is the constructor for the OVSt ar t Behavi or Event
class

OMStartBehaviorEvent
Visibility
Public
Description
This method is the constructor for the OVSt ar t Behavi or Event class.
Signature

OMStartBehaviorEvent () ;

400 Frameworks and Operating Systems Reference

OMState Class

OMState Class

The OVst at e class defines methods that affect statecharts.

This classis defined in the header file st at e. h.

Attribute Summary

‘ par ent

Specifies the parent

Construction Summary

‘ OMState

Constructs an QVBt at e object

Macro Summary

IS_EVENT_TYPE_OF(id)

Supports generic derived event handling

OM_DECLARE _FRAMEWORK_ MEMOR
Y_ALLOCATION_OPERATORS

Supports enhanced user control over framework
memory allocation

Method Summary

entDef Specifies the operation called when the state is entered
from a default transition

entHist Enters a history connector

enterState Specifies the state entry action

exitState Specifies the state exit action

getConcept Gets the statechart owner

getHandle Gets the handle

getlL astState Gets the last state

isCompleted Gets the substate

in Returns TRUE when the owner class is in this state

isCompleted Determines whether the OR state reached a final state,

and therefore can be exited on a null transition

serializeStates

Is called during animation to send state information

setHandle Sets the handle

setl astState Sets the last state

setSubState Sets the substate

takeEvent Takes the specified event off the event queue

Rational Rhapsody

401

OXF Classes and Methods

Attributes
parent

This attribute specifies the parent state of this state (the state this state is contained
in). It isdefined as follows:

OMState* parent;
Macros
IS EVENT_TYPE_OF(id)
This macro helps support generic derived event handling.

Rhapsody provides a generic way to handle the consumption of derived events. The support in
generic handling of derived events was done by adding anew method, i sTypeCf () , for every
event, and modifying the generated code to check the event using this method. The

i sTypeOf () method returns Tr ue for derived events, aswell asfor the actual event.

OM_DECLARE_FRAMEWORK_MEMORY_ALLOCATION_OPERATORS
This macro helps support user control over framework memory allocation.
Rhapsody supports application control over memory allocated in the framework in two ways:

¢ Complete the memory management coverage, so every memory allocation in the
generic framework as well as al the RTOS adaptorsis using the memory
management mechanism.

¢ Complete the usage of ther et ur nMenor y() interface, so the memory size
returned is passed.

402 Frameworks and Operating Systems Reference

OMState Class

OMState
Visibility
Public
Description
This method is the constructor for the OVSt at e class.
Signature

OMState (OMState* par = NULL) ;

Parameters

par

Specifies the parent

entDef
Visibility
Public
Description
This method specifies the operation called when the state is entered from a default transition.
Signature

virtual void entDef ()=0;

entHist
Visibility
Public
Description
This method enters a history connector.
Signature

virtual void entHist () ;

Rational Rhapsody 403

OXF Classes and Methods

enterState
Visibility
Public
Description
This method specifies the state entry action.
Signature

virtual void enterState() ;

exitState
Visibility
Public
Description
This method specifies the state exit action.
Signature

virtual void exitState()=0;

getConcept
Visibility
Public
Description

This method gets the current concept. This method should be overridden by the concrete

classes.
Signature
virtual AOMInstance * getConcept () const // animation
virtual void * getConcept () const //no animation
Return
The concept

404 Frameworks and Operating Systems Reference

OMState Class

getHandle
Visibility
Public
Description
This method gets the handle. This method is used for animation purposes.
Signature

const char * getHandle() const

Return

The handle

getLastState
Visibility
Public
Description
This method returns the last state.
Signature

virtual OMState* getLastState() ;

Return

The last state

Rational Rhapsody 405

OXF Classes and Methods

getSubState
Visibility
Public
Description
This method returns the substate.
Signature

virtual OMState* getSubState() ;

Return

The substate

Visibility
Public

Description
This method returns TRUE when the owner classisin this state.

Signature

virtual int in()=0;

406 Frameworks and Operating Systems Reference

OMState Class

isCompleted
Visibility
Public
Description

This method determines whether the OR state reached afinal state, and therefore can be exited
on anull transition.

Signature

virtual OMBoolean isCompleted ()

Return
The method returns one of the following Boolean values:

¢ TRUE—The operation is complete.
¢ FALSE—The operation is not complete.

Rational Rhapsody 407

OXF Classes and Methods

serializeStates
Visibility
Public
Description
This method is called during animation to send state information.
Signature

virtual void serializeStates (AOMSState* s) const = 0;

virtual void serializeStates(void*) //no animation

Parameters

S

Specifies the state

setHandle
Visibility
Public
Description
This method sets the handle. This method is used for animation purposes.
Signature

void setHandle (const char * hdl)

Parameters

hdl
Specifies the handle

408 Frameworks and Operating Systems Reference

OMState Class

setLastState
Visibility
Public
Description
This method sets the last state.

Signature

virtual void setLastState (OMState* s);

Parameters

S

Specifiesthe last state

setSubState
Visibility
Public
Description
This method sets the specified substate.
Signature

virtual void setSubState (OMState* g);

Parameters

S

Specifies the substate

Rational Rhapsody

409

OXF Classes and Methods

takeEvent
Visibility
Public
Description
This method takes the specified event off the event queue.
Signature

virtual int takeEvent (short 1Id);

Parameters

11d
Specifiesthe event ID

410 Frameworks and Operating Systems Reference

OMStaticArray Class

OMStaticArray Class

The OVBt at i cArr ay class contains basic library functions that enable you to create and
manipulate OVt at i cAr r ay objects. An OVBt at i cArray isatype-safe, fixed-size array.

This classis defined in the header fileonst ati c. h.

Attribute Summary

count Specifies the number of elements in the static array

theLink Specifies the link to an element in the static array

size Specifies the amount of memory allocated for the static
array

Construction Summary

OMStaticArray Constructs an OVBt at i CArr ay object
~OMStaticArray Destroys the OMSt at i cAr r ay object

Method Summary

operator [] Returns the element at the specified position
add Adds the specified element to the array
find Looks for the specified element in the array

etAt Returns the element found at the specified index
getCount Determines how many elements are in the array
getSize Returns the amount of memory allocated for the array
ISEmpty Determines whether the array is empty
removeAll Deletes all the elements from the array
setAt Inserts the specified element at the given index in the

array

Rational Rhapsody 411

OXF Classes and Methods

Attributes
count
This attribute specifies the number of elementsin the static array. It is defined as follows:

int count;

theLink

This attribute specifies the link to an element in the static array. It is defined as follows:
void** theLink;

size

This attribute specifies the amount of memory allocated for the static array. It is defined as

follows:
int size;

Example

To use a static array, the multiplicity must be bounded (for example, MAX_OBSERVERS).

Consider the following example:

oserver* itsCbserver[MAX_OBSERVERS] ;
for (int iter=0; iter<MAX OBSERVERS; iter++)

if (itsChserver[iter] != NULL)
itsObserver[iter]->notify();

412 Frameworks and Operating Systems Reference

OMStaticArray Class

OMStaticArray
Visibility
Public
Description
This method is the constructor for the OVSt at i cArr ay class.
Signature

OMStaticArray (int theSize)

Parameters

theSize

Specifies the amount of memory to alocate for the static array
See Also

~OMStaticArray

~OMStaticArray
Visibility
Public
Description
This method destroys the OVt at i cAr r ay object.

Signature

~OMStaticArray ()

See Also

OMStaticArra

Rational Rhapsody

413

OXF Classes and Methods

operator []
Visibility
Public
Description
The[] operator returns the element at the specified position.

Note
Thisis not the preferred method because it does not include a check of the index range.

Signature

Concept& operator [] (int 1)
Parameters
i
The index of the element to return

Return

The element at the specified position

414 Frameworks and Operating Systems Reference

OMStaticArray Class

add

find

Visibility

Public
Description

This method adds the specified element to the array.
Signature

void add (Concept c)

Parameters

(¢}

The element to add
See Also

removeAll

Visibility
Public

Description

This method looks for the specified element in the array.

Signature

int find(Concept c) const;

Parameters

(¢}

The element you want to find

Return

An integer that represents the index of the element in the array

Rational Rhapsody

415

OXF Classes and Methods

getAt
Visibility
Public
Description
This method returns the element found at the specified index.
Signature

Concept& getAt (int i) const
Parameters
i
The index of the element to retrieve

Return

The element found at the specified index

getCount
Visibility
Public
Description
This method returns the number of elementsin the static array.
Signature

int getCount () const

Return

The number of elementsin the array

416 Frameworks and Operating Systems Reference

OMStaticArray Class

getSize
Visibility
Public
Description
This method gets the size of the memory allocated for the static array.
Signature

int getSize () const

Return

Thesize

ISEmpty
Visibility
Public
Description
This method determines whether the static array is empty.
Signature

int isEmpty () const

Return
The method returns one of the following values:

¢ 0—Thestatic array is not empty.
¢ 1—Thedtatic array is empty.

Rational Rhapsody 417

OXF Classes and Methods

removeAll
Visibility
Public
Description
This method deletes al the el ements from the array.
Signature

void removeAll ()

See Also

add

setAt

Visibility

Public
Description

This method inserts the specified element at the given index in the array.
Signature

void setAt (int index, const Concepté& c)

Parameters

index

The index at which to add the new element

(¢}

The element to add

418 Frameworks and Operating Systems Reference

OMString Class

OMString Class

The OVt ri ng class contains basic library functions that enable you to create and manipulate
OMVBt ri ngs. An OMBt ri ng isabasic string class.

This classis defined in the header fileonst ri ng. h.

Construction Summary

OMString Constructs an OMCol | ect i on object
~OMString Destroys the OMCol | ect i on object

Method and Operator Summary

Operator[] Returns the character at the specified position

operator + Adds a string

operator += Adds to the existing string

operator = Sets a string

operator == Determines whether two objects are equal

operator >= Determines whether the first object is greater than or
equal to the second

operator <= Determines whether the first object is less than or equal
to the second

operator != Determines whether the first object is not equal to the
second object

operator > Determines whether the first object is greater than the
second

operator < Determines whether the first object is less than the
second

operator << Compares an output stream and a string

operator >> Compares an input stream and a string

operator * Is a customizable operator

CompareNoCase Performs a case-insensitive comparison of two strings.

Empty Empties the string

GetBuffer Returns the string buffer

GetlLength Returns the length of the string

ISsEmpty Determines whether the string is empty

OMDestructiveString2X Is used to support animation

resetSize Makes the string larger

SetAt Sets a character at the specified position in the string

SetDefaultBlock Sets the default string size

Rational Rhapsody 419

OXF Classes and Methods

OMString
Visibility
Public
Description
This method is the constructor for the OVt r i ng class.
Signatures

OMString() ;
OMString (const char c);
OMString (const char* c);

OMString (const OMStringé& s) ;

Parametersfor Signatures2 and 3

(¢}

The character to add to the newly created string
Parametersfor Signature 4

S

The string of characters to add to the newly created string

See Also

~OMString

420 Frameworks and Operating Systems Reference

OMString Class

~OMString
Visibility
Public
Description
This method destroys the OvBt r i ng object.
Signature

~OMString ()

See Also

OMString

Operator(]
Visibility
Public

Description

The[] operator returns the character at the specified position.

Signature
char operator [] (int i) const
Parameters
i
Theindex of the character to return

Return

The character at the specified position

Rational Rhapsody

421

OXF Classes and Methods

operator +
Visibility
Public
Description
The + operator adds a string.
Signatures

OMString operator+ (const OMString& s) ;
OMString operator+ (const char s);
OMString operator+ (const char * s)

inline OMString operator+ (const OMString& sl,
const OMString& s2)

inline OMString operator+ (const OMStringé& sl,
const char * s2)

inline OMString operator+ (const char* si1,
const OMStringé& s2)
Parametersfor Signatures1, 2, and 3

S

The string to add

Parametersfor Signature4, 5, and 6

sl
The string to which to add string 2

s2
The string to add to string 1

Return

The new string

422 Frameworks and Operating Systems Reference

OMString Class

operator +=
Visibility
Public
Description
The += operator adds to the existing string.
Signatures

const OMString& operator+=(const OMString& s);
const OMString& operator+=(const char s);

const OMString& operator+=(const char * s);

Parameters

5]

The characters to add to the string
Return

The updated string

Rational Rhapsody 423

OXF Classes and Methods

operator =
Visibility
Public
Description
The = operator sets the string.
Signatures

const OMStringé& operator=(const OMStringé& s);
const OMString& operator=(const char s);

const OMStringé& operator=(const char * s);

Parameters

5]

The string to set
Return

The string

424 Frameworks and Operating Systems Reference

OMString Class

operator ==
Visibility
Public
Description

The == operator is a comparison function used by OVBt r i ng to determine whether two
objects are equal.

Signatures

int operator==(const OMString& s2) const
int operator==(const char * c2) const

inline int operator==(const char * c1,
const OMStringé& s2)

Parametersfor Signature 1

s2

The string to compare to the current string

Parametersfor Signature 2

c2

The character to compare to the current character
Parametersfor Signature 3

cl

The character to compare to the specified string

s2

The string to compare to the specified character
Return
The method returns one of the following values:

¢ 1—Theobjectsare equal.
¢ 0—The objectsare not equal.

Rational Rhapsody

425

OXF Classes and Methods

operator >=
Visibility
Public
Description
The >= operator determines whether the first object is greater than or equal to the second.
Signatures

int operators>=(const OMString& s2) const
int operators>=(const char * c2) const

inline int operators>=(const char * c1,
const OMString& s2)

Parametersfor Signature 1

s2

The string to compare to the current string
Parametersfor Signature 2

c2

The character to compare to the current character

Parametersfor Signature 3

cl

The character to compare to the specified string

s2

The string to compare to the specified character
Return
The method returns one of the following values:

¢ 1—Thefirst object is greater than or equal to the second object.
¢ 0—Thefirst object isless than the second object.

426 Frameworks and Operating Systems Reference

OMString Class

operator <=
Visibility
Public

Description

The <= operator determines whether the first object is less than or equal to the second.

Signatures

int operator<=(const OMString& s2) const

int operator<=(const char * c2) const

inline int operator<=(const char * c,
const OMStringé& s)

Parametersfor Signature 1

s2

The string to compare to the current string
Parametersfor Signature 2

c2

The character to compare to the current character

Parametersfor Signature 3

c

The character to compare to the specified string

S

The string to compare to the specified character
Return
The method returns one of the following values:

¢ 1—Thefirst object islessthan or equal to the second.
¢ 0—Thefirst object is greater than the second.

Rational Rhapsody

427

OXF Classes and Methods

operator I=
Visibility
Public
Description
The! = operator determines whether the first object is not equal to the second.
Signatures

int operator!=(const OMString& s2) const
int operator!=(const char * c2) const

inline int operator!=(const char * c, const OMString& s)

Parametersfor Signature 1

s2

The string to compare to the current string
Parametersfor Signature 2

c2

The character to compare to the current character
Parametersfor Signature 3

(¢}

The character to compare to the specified string

]

The string to compare to the specified character
Return
The method returns one of the following values:

¢ 1—Thetwo objects are not equal.
¢ 0—Thetwo objectsare equal.

428 Frameworks and Operating Systems Reference

OMString Class

operator >
Visibility
Public
Description
The > operator determines whether the first object is greater than the second.
Signatures

int operators(const OMString& s2) const
int operators(const char * c2) const

inline int operators(const char * ¢, const OMString& s)

Parametersfor Signature 1

s2

The string to compare to the current string
Parametersfor Signature 2

c2

The character to compare to the current character
Parametersfor Signature 3

(¢}

The character to compare to the specified string

]

The string to compare to the specified character
Return
The method returns one of the following values:

¢ 1—Thefirst object is greater than the second.
¢ 0—Thefirst object is not greater than the second.

Rational Rhapsody 429

OXF Classes and Methods

operator <
Visibility
Public
Description
The < operator determines whether the first object is less than the second.
Signatures

int operator< (const OMString& s) const
int operator<(const char * c2) const

inline int operator<(const char * c, const OMStringé& s)

Parametersfor Signature 1

5]

The string to compare to the current string
Parametersfor Signature 2

c2

The character to compare to the current character
Parametersfor Signature 3

(¢}

The character to compare to the specified string

]

The string to compare to the specified character
Return
The method returns one of the following values:

¢ 1—Thefirst object isless than the specified second.
¢ 0—Thefirst object is not less than the second.

430 Frameworks and Operating Systems Reference

OMString Class

operator <<
Visibility
Public
Description
The << operator is used to compare an iostream and a string.
Signature

inline omostream& operator<< (omosteam& os,
const OMString& s)

Parameters

os

The output stream to compare to the string

S

The string to compare to the output stream

operator >>
Visibility
Public
Description
The >> operator isused to compare an iostream and a string.
Signature

omistream& operator>>(omisteam& is, OMStringé& s)

Parameters

os

The input stream to compare to the string

S

The string to compare to the input stream

Rational Rhapsody 431

OXF Classes and Methods

operator *
Visibility
Public
Description
The* operator is a customizable operator.
Signature

operator const char * ()

CompareNoCase
Visibility
Public
Description
This method performs a case-insensitive comparison of two strings.
Signatures

int CompareNoCase (const OMString& s) const

int CompareNoCase (char * s) const

Parameters

S

The string to compare to the current string
Return
The method returns one of the following values:

¢ 0—Thetwo strings are not the same.
¢ 1—Thetwo strings are the same (regardless of case).

432 Frameworks and Operating Systems Reference

OMString Class

Empty
Visibility
Public
Description
This method empties the string.
Signature

void Empty ()

GetBuffer
Visibility
Public
Description
This method gets the string buffer.
Signature

char * GetBuffer (int buffer) const

Parameters

buffer
A pointer to the resized string buffer

Return

The buffer contents

Rational Rhapsody 433

OXF Classes and Methods

GetLength
Visibility
Public
Description
This method returns the length of the string.
Signature

int GetLength() const;

Returns

The string length

ISEmpty
Visibility
Public
Description
This method determines whether the string is empty.
Signature

int IsEmpty () const

Return
The method returns one of the following values:

¢ 0—Thestring is not empty.
¢ 1—Thestring is empty.

434 Frameworks and Operating Systems Reference

OMString Class

OMDestructiveString2X
Visibility
Public
Description

This method is provided to support animation. It convertsachar * stringto OVSt ri ng as part
of the Rhapsody deserialization mechanism.

Signature

inline OMString OMDestructiveString2X (char * c,
OMStringé& s)

Parameters

c

Theinput string

S

A dummy parameter (used for overloading)
Return

AnQVBtring

resetSize
Visibility
Public
Description
This method enlarges the string and copies the contents into the larger string.
Signature

void resetSize (int newSize) ;

Parameters

newSize

The new size for the string

Rational Rhapsody 435

OXF Classes and Methods

SetAt
Visibility
Public
Description
This method sets a character at the specified position in the string.
Signature

void SetAt (int i, char c)
Parameters
i
The position at which to add the character

c

The character to add

SetDefaultBlock
Visibility
Public
Description
This method sets the default string size.
Signature

static void setDefaultBlock (int blkSize)

Parameters

blkSize
The new, default string size

436 Frameworks and Operating Systems Reference

OMThread Class

OMThread Class

OMrhr ead is aframework base active class. Its responsibilities are as follows:

¢+ Manage an event queue of events sent to reactive classes.

+ Digpatch the eventsin the queue to their reactive destinations on a separate RTOS
thread.

¢ Allow the client application to control the RTOS thread.
Thisclassis defined in the header file ont hr ead. h.

OMThr ead isabase classfor every classthat is active. An object of an active class:

+ Hasits own operating system thread for execution
¢+ Hasan event queue and manages it
Therefore, every active object has an OMThr ead instance, which is composed of two things:

+ An operating system thread
+ Anevent (message) queue

By default, there are at least two threads in an application: the timer thread and the main
thread. In this simple case, all events are queued in the main thread event queue.

Every operating system has a different implementation of a native thread.

Thethread is responsible for providing event services to all instances running on it. Every
event that is assigned to an object is sent to itsrelevant thread. The thread stores the eventsin
an event queue. OMThr ead usesawhi | e loop to consume events as they appear at the front of
the queue.

An active object can al so serve anonactive object. For example, your application might have a
class a that has a statechart but is also active, so it inherits from OMIhr ead and OVReact i ve.
Your application might also have aclass p that has a statechart, but is not active. Class p
inherits from OVReact i ve.

Suppose that p isrunning under a’sthread. Every event that is targeted for p must be stored
somewhere, and p does not have an event queue. Therefore, p delegates events destined for it
to a’s event queue, because p isrunning on a’s operating system thread and a has an event
queue.

If you have the following line of code, generating an event e to class p, e isstored inside a’s
OMThr ead event queue:

p -> CEN(e)

Rational Rhapsody 437

OXF Classes and Methods

In OMThr ead, the execute method cycles through the event queue looking for more events.
When it finds one or more events, it popsthe first event (for example, e) from the event queue.
The event has afield specifying the destination (p, in this example). p is then notified that it
should react to event e. The event is not necessarily consumed immediately—it waitsin the
event gueue. When the time arrives for the event to be consumed, it is popped from the event
gueue and injected into p’s OVReact i ve using the takeEvent method.

In Version 4.0, the inheritance from OMPr ot ect ed was replaced with aggregation. Asaresult,
the following were added to the OMThr ead interface:

*

*

*

voi d | ock() const—Putsalock on the thread mutex
voi d unl ock() const—Unlocks the thread mutex

const OWProtect ed& get Guard() const —Getsthe referenceto the
OWPr ot ect ed part

OWPr ot ect ed m onuar d—Isaprivate OVPr ot ect ed part

438

Frameworks and Operating Systems Reference

OMThread Class

Attribute Summary

aomthread Specifies the “instrumented” part of the thread

endOfProcess Specifies whether the application is at the end of a
process

eventQueue Specifies the thread’s event queue

thread Specifies the “0s” part of the thread

toGuardThread Determines whether a section of thread code will be
protected

Construction Summary

OMThread Constructs an OMThr ead object
~OMThread Destroys the OMThr ead object

Method Summary

allowDeletelnThreadsCleanup Postpones the destruction of a framework thread until
the application terminates and all user threads are
deleted

cancelEvent Marks a single event as canceled (that is, it changes the
event’s ID to OMCancelledEventld)

cancelEvents Marks all events targeted for the specified OVReact i ve

instance as canceled (that is, it changes the events’ IDs
to OMCancelledEventld)

cleanupAllThreads “Kills” all threads in an application except for the main
thread and the thread running the
cl eanupAl | Thr eads method

cleanupThread Provides a “hook” to allow a thread to be cleaned up
without a call to the DTOR

destroyThread Destroys the default active class or object for the
framework

doExecute Is the entry point to the thread main loop function

execute Is the thread main loop function

getAOMThread Is used by the framework for animation purposes

getEventQueue Is used by the framework for animation purposes

getGuard Gets the reference to the OVPr ot ect ed part

getOsHandle Returns the thread’s operating system ID

getOSThreadEndClb Requests a callback to end the current operating
system thread

getStepper Is used by the framework for animation purposes

lock Puts a lock on the thread mutex

omGetEventQueue Returns the event queue

queueEvent Queues events to be processed by the thread event

loop (execute)

Rational Rhapsody 439

OXF Classes and Methods

resume Resumes a thread suspended by the suspend method
schedTm Creates a timeout request and delegates the request to

OMTi mer Manager

setEndOSThreadInDtor

Specifies whether an operating system thread in
destruction should be deleted

setPriority Sets the priority of the thread being executed
setToGuardThread Sets the toGuardThread flag

shouldGuardThread

Determines whether the thread should be guarded

start

Activates the thread to start its event-processing loop

stopAllThreads

Is used to support the DLL version of the Rational
Rhapsody Developer for C++ execution framework
(COM)

suspend Suspends the thread
unlock Unlocks the thread mutex
unschedTm Cancels a timeout request

Attributesand Flags

aomthread

This protected attribute specifies the “instrumented” part of the thread.

It is defined as follows:

AOMThread *aomthread;

The AOMThr ead classis defined in the animation framework in the instrumented application,
and set to an empty class in non-instrumented mode.

endOfProcess

This public attribute specifies whether the application is at the end of aprocess. If itis, the last

thread in the process must “clean up.”

The possible values for thisflag are as follows:

¢ 0—Not at the end of a process

¢ 1—Attheend of aprocess

It is defined as follows:

static int endOfProcess;

440

Frameworks and Operating Systems Reference

OMThread Class

eventQueue
This protected attribute specifies the thread’s event queue.
It is defined as follows:

OMEventQueue *eventQueue;

The class OVEvent Queue isdefined inos. h.

thread

This protected attribute specifiesthe “os’ part of the thread.
It is defined asfollows:

OMOSThread *thread;
The OMOSThr ead classis defined in os. h.

toGuardThread

This protected attribute determines whether a section of thread code will be protected. If it is
set to TRUE, the code is protected. Otherwise, the code is not protected.

It isdefined as follows:

OMBoolean toGuardThread;
OVBool ean is defined in rawtypes. h.

t oGuar dThr ead is checked by the execute method before it startsits event loop iteration. If
t oGuar dThr ead iISTRUE, execut e calsthe START_THREAD_GUARDED_SECTION and the
END_THREAD_GUARDED_SECTION mMacros.

Rational Rhapsody 441

OXF Classes and Methods

OMThread
Visibility
Public

Description

This method is the constructor for the OMThr ead class. See the section Notes for detailed
information.

Signatures

OMThread (int wrapThread);

OMThread (const char* const name = NULL, const long
priority = OMOSThread: :DefaultThreadPriority,
const long stackSize = OMOSThread::DefaultStackSize,
const long messageQueueSize =
OMOSThread: :DefaultMessageQueueSize,
OMBoolean dynamicMessageQueue = TRUE) ;

Parametersfor Signature 1

wrapThread

Specifies whether a new operating system thread is constructed (the default, wr apThr ead =
0), or isawrapper on the current thread.

A wrapper thread might be used, for example, in GUI applications where Rhapsody creates its
own thread to attach to an existing GUI thread.

Parametersfor Signature 2

name

Specifies a name for the thread. The default valueis NULL.

priority

Specifies the thread priority.

Def aul t ThreadPri ority isdefinedin os. h asfollows:
static const |ong DefaultThreadPriority;

The default value is specified in xxos. cpp. For example, nt os. cpp specifies the following
value:
const | ong OMOSThread:: Def aul t ThreadPriority =

THREAD_ PRI ORI TY_NORMAL;

stackSize

442 Frameworks and Operating Systems Reference

OMThread Class

Specifies the size of the stack.

Def aul t St ackSi ze isdefinedin os. h asfollows:
static const |ong DefaultStackSi ze

The default value is specified in xxos. cpp. For example, nt os. cpp specifies the following
value:
const | ong OMOSThread: : Def aul t St ackSi ze = 0;

messageQueueSize

Specifies the size of the message queue.

Def aul t MessageQueuesSi ze isdefined in os. h asfollows:
static const |ong Defaul t MessageQueueSi ze;

The default value is specified in xxos. cpp. For example, nt os. cpp specifies the following
value:
const | ong OMOSThread: : Def aul t MessageQueueSi ze =
100;

dynamicMessageQueue

Specifies whether the message queue is dynamic. The default value is TRUE.

Notes

¢ OMrhread inheritsfrom the OvPr ot ect ed class, a neutral implementation of a
mutex. Every OMThr ead instance has a mutex because, in a multi-threaded
environment, your application must protect critical sections of code.

¢ OMThr ead aggregates OMOSThr ead to get the basic threading features.

+ Initialy, the message queue is empty. The maximum length of the message queue
is operating system- and implementation-dependent, and is usually set in the file
implementing the adapter for a specific operating system.

The message queue is an important building block for OMrhr ead. It is used for intertask
communication between Rhapsody tasks (active classes). OMOSThr ead provides a thread-
safe, unbounded message queue (FIFO) for multiple writers and one reader. The reader pends
the message queue until there is a message to process.

¢ Message queues are protected against concurrent operations from different threads.

¢ Initialy, the thread is suspended until the start method is called. The resume and suspend
methods provide away of stopping and starting the thread. Because threads usually block
when waiting for aresource like a mutex or event flag, these methods are rarely used.

Note the following distinctions between the different method calls:

¢ Thefirst version of the method is the constructor for the OMIhr ead class when a new
thread is constructed as awrapper on the current thread.

Rational Rhapsody 443

OXF Classes and Methods

¢ OMrhr ead creates athread that is awrapper on either the current thread or the thread
whose ID it is passed. Wrapper threads are used only for instrumentation to represent
user-defined threads (those defined outside the Rhapsody framework).

* The second version of the method is the constructor for the OMrhr ead class when a new
thread is constructed (as opposed to a wrapper on the current thread).

¢ The constructor works in the following way:

— First, it callsthei ni t method and passesto it the nane, st ackSi ze,
messageQueueSi ze, and dynam cMessageQueue parametersthat it was
given. In addition, it passes 0 for thew apThr ead parameter. Refer to the
alternate constructor OMThread (defined in ont hr ead. h).

— Next, it callsthe setPriority method and passestoit thepri ori t y parameter
that it was given.

See Also

nit

~OMThread

resume

~OMThread
Visibility
Public
Description
This method is the destructor for the OMrhr ead class. It is called by the doExecute method.

~OMThr ead deletes (destroys) the thread if it is not the current thread. If the thread to be
deleted isthe current thread, it cannot be destroyed (because the system will halt). In this case,
the thread is marked for destruction after it is no longer the current thread.

Signature
virtual ~OMrhread()

See Also

doExecute

444 Frameworks and Operating Systems Reference

OMThread Class

allowDeletelnThreadsCleanup
Visibility
Public
Description

This method postpones the destruction of aframework thread until the application terminates
and all user threads are deleted.

Do not override this method in user active classes.

Signature

virtual OMBoolean allowDeleteInThreadsCleanup ()

cancelEvent
Visibility
Public
Description

This method marks a single event as canceled (that is, it changesthe event’s ID to
OMCancelledEventld).

Signature
virtual void cancel Event (OVEvent* ev);

Parameters

ev

Specifies the event to be canceled
Notes

In the framework, cancel Event isvirtual to support enhanced framework customization. It
can also support several event queues per task.

See Also

cancelEvents

Rational Rhapsody 445

OXF Classes and Methods

cancelEvents

Visibility

Public
Description

This method marks all events targeted for the specified OvReact i ve instance as canceled
(that is, it changes the events' IDsto OMCancelledEventid).

You might want to usethe cancel Event s method if, for example, there are several eventsin
the event queue targeted for a specific OVReact i ve instance, but the instance has aready
been destroyed because it reached a termination connector in the statechart.

Thecancel Event s method works in the following way:

¢ |tcallsunschedTm and asks OMThr eadTi ner: : i nst ance() to cancel all
timeouts (events) targeted to the specified dest i nat i on.

+ |t getsalist of eventsin the event queue and iterates through the event queue. If
the method finds an event targeted for destination, it setsitsID to
OMcCancelledEventld. The event still remains in the event queue; after it is
eventually removed from the event queue, it is discarded.

Signature

virtual void cancel Event s(OVReacti ve* destination);

Parameters

destination

Specifies an OVReact i ve instance

Notes

In the framework, cancel Event s isvirtual to support enhanced framework customization. It
can also support several event queues per task.

See Also
cancelEvent
destination

unschedTm

446 Frameworks and Operating Systems Reference

OMThread Class

cleanupAllThreads
Visibility
Public
Description

This method “kills” all threads in an application except for the main thread and the thread
running the cl eanupAl | Thr eads method.

The method supports static instances of active classes (particularly the static instance of
OWMai nThr ead).

Signature

static OMThread* cl eanupAll Threads();

Notes

Thecl eanupAl | Thr eads method is only called in RTOSes where the process cannot be
“exited” in asimple manner.

cleanupThread
Visibility
Public
Description

This method provides a“hook” to allow athread to be cleaned up without a call to the DTOR.
This method enables you to clean up athread without destroying the virtual function table.

Signature

virtual void cl eanupThread()

Rational Rhapsody 447

OXF Classes and Methods

destroyThread
Visibility
Public

Description

This method destroys the default active class or object for the framework. It supports static
instances of active classes (particularly the static instance of OMMVRI nThr ead).

If you have a custom RTOS adaptor that deletes threads in GSEndAppl i cat i on, modify the
adapter to call dest r oyThr ead instead of the del et e operator.

If you create by-value instances of an active class, you should override the dest r oy Thr ead
method to prevent the system from attempting to delete the static instances.

Signature

virtual void destroyThread ()

doExecute
Visibility
Public
Description

This method is the entry point to the thread main loop function. doExecut e handles
“bookkeeping” issues and calls the execute method to do the actual event loop processing.

doExecut e handles situations where the event loop is stopped for some reason. For example,
if thereisasingle active object running on its own thread, and the object reaches atermination
connector, it must “kill” itself and its thread. However, it cannot kill the thread until after it
exits the event loop.

Signature

static void doExecute (voi d* ne);

Parameters

me

Specifies a pointer to the OMThr ead instance to activate

448 Frameworks and Operating Systems Reference

OMThread Class

Notes

The doExecut e method calls ~OMThread, the destructor for the OMrhr ead class, to delete a

thread.
See Also
execute
~OMThread
execute
Visibility
Public
Description

This method isthe thread main loop function. By default, this protected function processes the
events in the thread's queue.

You can overwrite execut e in order to implement customized thread behaviors.

The execut e method worksin the following way:

1

First, it setsthe destination to NULL and the det er i nat e attribute (defined in
ont eact i ve. cpp) to FALSE. The method continuesiterating through the event queuein
an almost infinite loop until t oTer mi nat e = TRUE.

execut e entersawhi | e loop to process events. Firgt, it checksthe toGuardThread
attribute. If t oGuar dThr ead iS TRUE, execut e callsthe
START_THREAD_GUARDED_SECTION macro. t oGuar dThr ead should be set to TRUE by
your application, if necessary.

execut e getsthefirst event from the event queue. If the eventisnot aNULL event,
execut e callsthe getDestination method to determine the OVReact i ve destination for
the event.

If the event is not a canceled event, execut e calls the takeEvent method to request that
the reactive object process the event.

Finally, execut e callsthe isDeleteAfterConsume method to determine whether the
deleteAfterConsume attribute isTRUE. If itis, execut e callsthe Delete method to delete
the event.

Rational Rhapsody 449

OXF Classes and Methods

Signature

vi rtual OVReactive* execute();

Return

This method returns OVReact i ve, which specifies the reactive class that “owns’ the thread
(active).

Note

The Rhapsody framework does not provide any default exception handler. One reason for
thisisthat you can configure BSPs to exclude exception handling, which impacts footprint
and performance. However, this does not prevent you from using your own C++ exception
handler.

You may prefer to put ageneral fallback handler in the main loop of OMThr ead in the
execut e method. You can also add exception handling as a conditional code segment that
should be disabled by default.

You can override execute to specialize different thread behaviors. For example, you can
create an active class that is not reactive (see Active and Reactive Classes).

See Also
Delete
doExecute
getDestination
isDeleteAfterConsume
start

START _THREAD_ _GUARDED_SECTION

takeEvent

toGuardThread

450 Frameworks and Operating Systems Reference

OMThread Class

getAOMThread
Visibility
Public
Description
This method is used by the framework for animation purposes.
Signature

AOMThread* getAOMThread () const

getEventQueue
Visibility
Public
Description
This method is used by the framework for animation purposes.
Signature

AOMEventQueue* getEventQueue () const;

getGuard
Visibility
Public
Description
This method gets the reference to the OVPr ot ect ed part.
Signature

inline const OMProtected& getGuard() const

Return

The reference to the OvPr ot ect ed part

Rational Rhapsody 451

OXF Classes and Methods

getOsHandle

Visibility

Public
Description

This method returns the thread's operating system I1D. This method is operating system-
dependent.

Signatures

voi d* get CsHandl e() ;

voi d* get CsHandl e(voi d*& osHandl e) ;

Parametersfor Signature 2

osHandle

Specifies the operating system handle
Return
The thread’s operating system ID

Notes

¢ The second version of the method supports the DLL version of the framework
(COM).

¢ A red-time operating system (RTOS) usually provides a pointer to an ID or
handle for the active thread. Thisis useful if you need to know the ID of thereal
thread that is running, because the object itself only “knows’ that it is running on
OMThr ead.

See Also

getOsHandle

452 Frameworks and Operating Systems Reference

OMThread Class

getOSThreadEndClb
Visibility
Public

Description

This method requests a callback to end the current operating system thread. There are two
callbacks, depending on whether you are “sitting” on your own thread, or you are an object
belonging to another thread.

Signature

voi d get OSThreadEndd b (
OMOSThr ead: : OMOSThr eadEndCal | Back *cl b_p,
void **argl_p, OVBool ean onExecut eThread = TRUE)
const;

Parameters

clb p
Is apointer to the callback function.

argl p
Specifies the argument for the callback function.

onExecuteThread

Specifies how the current thread will be “killed.” If thisis TRUE, the current thread killsitself.
If it is FALSE, another thread will kill the current thread

Note

The get OSThr eadEndd b method istypically used in conjunction with the
setEndOSThreadInDtor method.

See Also

setEndOSThreadInDtor

Rational Rhapsody 453

OXF Classes and Methods

getStepper
Visibility
Public
Description
This method is used by the framework for animation purposes.

Signature

AOMStepper* getStepper () const;

lock
Visibility
Public
Description
This method puts alock on the thread mutex.

Signature

inline void lock() const

omGetEventQueue
Visibility
Public
Description
This method returns the event queue. This method is not used by the framework.
Signature

virtual const OMEventQueue* omGetEventQueue () const

Return

The event queue

454 Frameworks and Operating Systems Reference

OMThread Class

queueEvent
Visibility
Public
Description

This method queues events to be processed by the thread event loop (execute).

Signature

vi rtual OMBool ean queueEvent (OVEvent* ev,
OvBool ean from SR = FALSE) ;

Parameters

ev

Specifies the event to be queued

fromISR

Specifies whether the event has been generated by an interrupt service request (ISR)
Return
The method returns one of the following Boolean values:

¢ TRUE—The method successfully queued the event.
¢ FALSE—The method was unable to queue the event.

Notes

In the framework, queueEvent isvirtual to support enhanced framework customization. It
can also support several event queues per task.

See Also
action

execute

Rational Rhapsody 455

OXF Classes and Methods

resume
Visibility
Public
Description
This method resumes a thread suspended by the suspend method.

Threads usually block when waiting for aresource like amutex or event flag, sor esune is
rarely used by the generated code. You can user esune for advanced scheduling.

Signature
voi d resume();

See Also

suspend

schedTm
Visibility
Public
Description
This method creates a timeout request and del egates the request to OMTi mer Manager .
Signature

virtual void schedTm (tinmeUnit delteTime, short id,
OVReact i ve *instance, const OvHandl e * state = NULL);

Parameters

delteTime
Specifies the delay time, in milliseconds, before the timeout request is triggered.

id
Identifies the timeout, either at delivery or for canceling. Every timeout has a specific ID to
distinguish it from other timeouts.

instance

Specifies a pointer to the OVReact i ve instance requestor. After atimeout has matured, this
parameter points to the instance that should be notified.

456 Frameworks and Operating Systems Reference

OMThread Class

state
Specifies an optional parameter used by the Rhapsody instrumentation to designate a pointer
to the state name upon which the timeout is scheduled. The default valueis NULL, for the
noninstrumented case.

Notes
¢ Intheframework, schedTmisvirtual to support enhanced framework
customization. It can also support several timer managersin the system (for
example, one per active class).
¢ schedTmcreates the timeout using the incarnateTimeout method defined in
onr eactive. h.
¢ schedTmdelegates the timeout to OMTi mer Manager using the set method
definedinti mer. h.
¢ The code generator generates a call to schedTmwhen it encounters timeout
transitions.
¢ You can use schedTm if the statechart implementation is overridden.
See Also

incarnateTimeout

set

Rational Rhapsody 457

OXF Classes and Methods

setEndOSThreadInDtor
Visibility
Public
Description
This method specifies whether an operating system thread in destruction should be deleted.

Signature
voi d set EndCSThr eadl nDt or (OVBool ean val)
Parameters

val
Specifies one of the following Boolean val ues:
* TRUE—Del ete the object representing the operating system thread (and release the
resources).

¢ FALSE—Do not delete the object representing the operating system thread. For
example, the application is executing on thisthread and, if it is deleted, the system
will “leak” resources.

Notes

¢ -OMThread callsset EndOSThr eadl nDt or with avalue of TRUE prior to
destroying the thread.

¢ deregisterThread (private) callsset EndOSThr eadl nDt or with avalue of
TRUE prior to destroying the thread.

¢ set EndOSThr eadl nDt or istypicaly used in conjunction with the isNotDelay
method.

See Also

~OMThread

isNotDelay

458 Frameworks and Operating Systems Reference

OMThread Class

setPriority

Visibility
Public

Description
This method sets the priority of the thread being executed.
This method is operating system-dependent.

Signature

void setPriority (int pr);

Parameters

pr
Specifies the thread’s priority

See Also

OMThread

setToGuardThread
Visibility
Public
Description
This method sets the toGuardThread flag.
Signature

inline void set ToGuardThread (OvBool ean fl ag)

Parameters

flag
Specifies the value for the toGuardThread attribute

See Also

toGuardThread

Rational Rhapsody 459

OXF Classes and Methods

shouldGuardThread

Visibility

Public
Description

This method determines whether the thread should be guarded.
Signature

inline OMBoolean shouldGuardthread() const

Return

The method returns one of the following Boolean values:

¢ TRUE—Guard the thread.
¢ FALSE—Do not guard the thread.

start
Visibility
Public

Description
This method activates the thread to start its event-processing loop.

If an object hasits own thread, when the object is created, the thread is suspended. Thest ar t
method is used to start event processing. This enables an active classto initialize itself by
calling the startBehavior method, then to call the st art method to start event processing.

The st art method worksin the following way:

* |f thevalueof thedoFor k attributeisFALSE, st art callstheexecute method and
the main thread simply grabs control from the system.

+ |f thevalue of the doFor k attributeis TRUE, st ar t issuesthe following calls.

OMOSThread * oldWrapperThread = thread;
thread = theOSFactory () ->createOMOSThread (
doExecute, this);
In this situation, the thread is registered, but does not take control. Another thread (for
example, a GUI thread) will be responsible for event loop processing.

460 Frameworks and Operating Systems Reference

OMThread Class

Signature

virtual void start(int = 0);
Notes

¢ The constructor of the composite object starts preexisting instances.

¢ The creator should start any dynamically created instances of oMThread.
See Also

execute

resume

suspend

stopAllThreads
Visibility
Public
Description
This method is used to support the DLL version of the Rational Rhapsody Developer for C++

execution framework (COM).

Note

The method is used in the COM environment only, as part of the implementation of
OXF: : end.

Signature
stati c OMThread* stopAll Threads(OMrhr ead* ski pne);
Parameters

skipme
The framework uses this parameter to avoid killing the NTHandl eCl oser in the Microsoft
environment.

Rational Rhapsody 461

OXF Classes and Methods

suspend
Visibility
Public
Description
This method suspends the thread.

Threads usually block when waiting for aresource like a mutex or event flag, so suspend is
rarely used by the generated code. You can use suspend for advanced scheduling.

Signature

voi d suspend();

See Also

resume

unlock
Visibility
Public
Description
This method unlocks the thread mutex.

Signature

inline void unlock() const

462 Frameworks and Operating Systems Reference

OMThread Class

unschedTm
Visibility
Public
Description
This method cancels atimeout request.
This method is used when:

¢ Exiting a state—The timeout is no longer relevant.

+ An object hasbeen destroyed—In this case, all timers associated with the object
are destroyed.

Signature
virtual void unschedTm (short id, OVReactive *c);
Parameters
id
Specifiesthe ID tag of the timeout request. If thisis OMEventAnyEventid, unschedTmcancels

al events whose destination is this specific instance of OVReact i ve. If thisis set to a specific
event ID, unschedTmcancels only that event.

c

Specifies a pointer to the OVReact i ve instance requestor. After atimeout has been canceled,
this parameter points to the instance that should be notified.

Notes
¢ Intheframework, unschedTmisvirtual to support enhanced framework customization. It

can also support several timer managersin the system (for example, one per active class).

¢ Thecode generator generates acall to unschedTm when the state upon which the timeout
was scheduled has been exited.

¢ unschedTmcallsthe unschedTm method definedint i mer . h.
¢ Canceling atimeout requires one of two actions:
— Deleting the timeout from the heap

— Canceling it inside the event queue (if it was already dispatched) by iterating
the event queue

¢ You can use unschedTmin cases where the statechart implementation is overridden.

Rational Rhapsody 463

OXF Classes and Methods

See Also

OMEventAnyEventld,

cancelEvents

464 Frameworks and Operating Systems Reference

OMThreadTimer Class

OMThreadTimer Class

OMThr eadTi ner inheritsfrom OMTi mer Manager and performsthe actual timing servicesfor
the framework and your application. Thisclassis declared in thefileti ner . h.

Thread timing is delegated to OMThr eadTi ner by OMTi mer Manager so OMTi mer Manager
can be ageneral purpose timer, and other timers can be created to perform specific timing
tasks. For example, OMThr eadTi ner isaperiodic timer—every tick time it starts working,
then suspendsitself for thetick time period (so as not to consume CPU time). Another possible
type of timer would be an asynchronous timer—one activated by an interrupt from the
operating system.

Currently, OMThr eadTi mer isthe only specific timer in the Rhapsody framework.

Note
The OMThr eadTi mer method is part of the base class, OMTIi nmer Manager .

Construction Summary

~OMThreadTimer ‘ Destroys the OMThr eadTi nmer object

Method Summary

action Sends a matured timeout request to the relevant thread,
where it is then inserted into the thread’s event queue

initInstance Creates an instance of OMThr eadTi mer

Rational Rhapsody 465

OXF Classes and Methods

~OMThreadTimer
Visibility
Public
Description
This method is the destructor for the OMThr eadTi ner class.
Signature

RP_FRAMEWORK DLL virtual ~OMTrhreadTi mer

action
Visibility
Public
Description

This method sends a matured timeout request to the relevant thread, where it is then inserted
into the thread's event queue.

Theact i on method checksthe value of i sNot Del ay to see whether the timeout isadelay. If
the timeout isnot adelay (i sNot Del ay = TRUE), act i on determines the thread of the
receiver. First, act i on calls getDestination to determine the OVReact i ve instance to which
the timeout is delegated.

If the OVReact i ve instance exists, act i on calls getThread to determine the OMThr ead to
which the timeout is delegated. If the OMThr ead instance exists, act i on callsgueueEvent to
insert the timeout in the thread’s event queue.

If thetimeout isadelay (i sNot Del ay = Fal se), thethread isthe receiver. act i on cals
get Dest i nat i on, then callswakeup.

Signature

RP_FRAMVEWORK DLL virtual void action (Tineout *tineout);

Parameters

timeout

Specifies the timeout request to be sent to the thread

466 Frameworks and Operating Systems Reference

OMThreadTimer Class

Note

Theact i on method overrides the private act i on method defined in the
OMTTi nmer Manager class.

See Also

getDestination
getThread
isNotDelay

OMDelay

OMTimerManager

gueueEvent

wakeup

initinstance
Visibility
Public
Description
This method creates an instance of OMThr eadTi mer . OMThr eadTi ner isasingleton.
Signature

RP_FRAMEWORK DLL static OMThreadTimer* initInstance (
int ticktime =
OMTimerManagerDefaults::defaultTicktime,
unsigned maxTM = OMTimerManagerDefaults::defaultMaxTM,
OMBoolean isRealTimeModel = TRUE) ;

Parameters

ticktime

Specifies the basic system tick, in milliseconds. Every ticktime, the framework and user
application are notified that the time was advanced.

defaultTicktime isdefinedint i mer . h asfollows:
static const unsigned defaultTicktine;

Rational Rhapsody 467

OXF Classes and Methods

The default value is specified in oxf . cpp asfollows:
const unsi gned
OMTi mer Manager Def aul t s: : defaul t Ti cktime = 100

maxTM

Specifies the maximum number of timeouts that can exist simultaneously in the system. The
value for max TMis used to construct the heap and matured list for storing timeouts.

defaultMaxTM isdefinedint i mer . h asfollows:
static const unsigned defaul t MaxTM

The default value is specified in oxf . cpp asfollows:
const unsi gned
OMTi mer Manager Def aul t s: : def aul t MaxTM = 100;

See Also

OMTimerManager

468 Frameworks and Operating Systems Reference

OMTimeout Class

OMTimeout Class

A timeout is an event used for notification that a specified time interval has expired (that is, it
implements a UML time event).

Timeouts are either created by instances entering states with timeout transitions, or delay
regquests from user code. In the latter case, thet i meout Del ayl d of thisevent is asfollows:
const short timeoutDelayld = -1;

The OMTi meout classisdeclared in the header fileevent . h.

OMTi meout uses the following comparison functions to manipulate its heap structure:
i nt operator==(OMIi meout & tn)
{ OMBool ean mat chDest = getDestination() ==
tn. getDestination();
OvBool ean matchld = ((getTineoutld() ==
tn.getTimeoutld()) || (getTineoutld() ==
OvEvent AnyEvent1d) ||
(OMEvent AnyEventld == tn.getTimeoutld()));
return (matchDest && matchld);

i nt operator>(OMIineout& tn) {return dueTine >
tn. dueTi ne; }

i nt operator<(OMIineout& tn) {return dueTine <
tn. dueTi ne; }

Attribute Summary

timeoutDelayld Identifies a delay request from user code

Macro Summary

DECLARE_MEMORY_ALLOCATOR Specifies a set of methods that declare the memory pool
for timeouts

Construction Summary

OMTimeout Constructs an OMTi meout object

~OMTimeout Destroys the OMTi meout object

Method Summary

operator == Determines whether the current values of
desti nati on and Ti neout are the same as those of
the specified timeout

operator > Determines whether the current value of Ti meout is
greater than the due time of the specified timeout

Rational Rhapsody 469

OXF Classes and Methods

operator < Determines whether the current value of Ti meout is
less than the due time of the specified timeout

Delete Deletes a timeout from the heap

getDelay Returns the current value of del ayTi ne

getDueTime Returns the due time of a timeout request stored in the

heap

getTimeoutld

Returns the current value fort i neout | d

isNotDelay Determines whether a timeout event is a timeout delay
new Allocates additional memory

setDelay Sets the value of Ti meout

setDueTime Specifies the value for the Ti meout attribute

setRelativeDueTime

Calculates and sets the due time for a timeout based on
the current system time and the requested delay time

setState

Used by the framework to set the current state

setTimeoutld

Specifies the value for t i neout | d

470

Frameworks and Operating Systems Reference

OMTimeout Class

Attribute
timeoutDelayld

This global attribute identifies a delay request from user code. It is defined as
follows:

const short timeoutDelayId = -1;

Macro
DECLARE_ MEMORY_ALLOCATOR

This public macro specifies a set of methods that declare the memory pool for
timeouts. The default number of timeoutsis 100.

The DECLARE_MEMORY_ALLOCATOR macro isdefined in MenAl | oc. h asfollows:

#define DECLARE_MEMORY ALLOCATOR (CLASSNAME)
public:

CLASSNAME * OMMemoryPoolNextChunk;
DECLARE ALLOCATION_ OPERATORS
static void OMMemoryPoolIsEmpty () ;
static void OMMemoryPoolSetIncrement (int value) ;
static void OMCallMemoryPoolIsEmpty (
OMBoolean flagValue) ;
static void OMSetMemoryAllocator (
CLASSNAME* (*newAllocator) (int)) ;

Rational Rhapsody 471

OXF Classes and Methods

OMTimeout
Visibility
Public
Description
Thi s method is the constructor for the OMTi meout class.
Signatures

OMTi meout () ;

OMTi meout (short id, OVReactive* pdest, timeUnit del ay,
const OwHandl e* theState);

Parameters
id
Specifies the timeout 1D

pdest
Specifies the destination OVReact i ve instance

delay
Specifies the requested delay, in milliseconds

theState

Specifies an optiona state handle used for Rhapsody instrumentation purposes
See Also

~OMTimeout

472 Frameworks and Operating Systems Reference

OMTimeout Class

~OMTimeout
Visibility
Public
Description
This method is the destructor for the OMTi meout class.

Signature
~OMTi meout () ;
See Also

OMTimeout

operator ==
Visibility
Public
Description

The == operator is a comparison function used by OMTi mer Manager to manipulate its heap
structure. It determines whether the current values of dest i nati on and Ti meout arethe
same as those of the specified timeout.

The comparison yields one of the following values:

¢ 1—Thecurrent values of desti nat i on and Ti neout are the same as those of
the specified timeout.

¢ 0—Thecurrent values of dest i nat i on and Ti neout are not the same as those
of the specified timeout.

Signature

int operator == (OMIineout& tn) {

OVBool ean mat chDest = getDestination() ==
tn. getDestination();

OvBool ean matchld = ((getTimeoutld() ==
tn.getTineoutld()) |]
(get Tineout 1 d() == OvEvent AnyEventld) ||
(OvEvent AnyEventld == tn.getTinmeoutld()));

return (matchDest && matchld);}

Parameters

tn

Rational Rhapsody 473

OXF Classes and Methods

Specifies the address of the timeout

See Also

operator >

operator <

operator >
Visibility
Public

Description

The > operator is a comparison function used by OMTi mer Manager to manipulate its heap
structure. It determines whether the current value of Ti meout is greater than the due time of

the specified timeout.

The comparison yields one of the following values:

¢ 1—Thecurrent value of Ti meout isgreater than the due time for the specified

timeout.

¢ 0—Thecurrent value of Ti meout isnot greater than the due time for the specified

timeout.

Signature

int operator > (OMi nmeout & tn)

Parameters

tn

Specifies the address of the timeout
See Also

operator ==

operator <

474

Frameworks and Operating Systems Reference

OMTimeout Class

operator <
Visibility
Public
Description

The < operator is a comparison function used by OMTi mer Manager to manipulate its heap
structure. It determines whether the current value of Ti meout islessthan the due time of the
specified timeout.

The comparison yields one of the following values:

¢ 1—Thecurrent value of Ti meout islessthan the due time for the specified
timeout.

¢ 0—Thecurrent value of Ti meout isnot less than the due time for the specified
timeout.

Signature

int operator < (OMi nmeout& tn)

Parameters

tn

Specifies the address of the timeout
See Also
operator ==

operator >

Rational Rhapsody 475

OXF Classes and Methods

Delete

Visibility
Public

Description

The Del et e method del etes a timeout from the heap. Thisis the only method that should be
used to delete timeouts.

Signature

void Del ete();

Notes

¢ TheunschedTm method iterates through the heap, and callsthe Del et e method to
delete one or more timeouts.

¢ TheDECLARE_MEMORY_ALLOCATOR macro creates the memory pool for
timeouts. The Del et e operator returns memory to the memory pool. The new
operation gets memory from the memory pool.

See Also

DECLARE_MEMORY_ALLOCATOR

ne

unschedTm

476

Frameworks and Operating Systems Reference

OMTimeout Class

getDelay
Visibility
Public
Description
The get Del ay method returns the current value of del ayTi ne.
Signature

timeUnit getDel ay() const

Return
The value for timeout delays, in milliseconds
See Also

setDelay

getDueTime
Visibility
Public
Description
The get DueTi me method returns the due time of atimeout request stored in the heap.
Signature

timeUnit getDueTi me() const

Return

The time at which the timeout request becomes due (ready to be sent to the relevant thread as
an event)

Rational Rhapsody 477

OXF Classes and Methods

getTimeoutld
Visibility
Public
Description
Theget Ti meout | d method returns the current value for t i meout | d.
Signature

short getTi meoutld() const

Return
The timeout |ID
Notes

Rhapsody defines several special 1D values, asfollows:

Rhapsody ID Value Description

OVEvent Nul I I d -1 The null event ID

OVEvent Ti neout | d -2 The timeout event ID

OMEvent Cancel | edEvent | d -3 The canceled event ID

OVEvent AnyEvent | d -4 The ID for all events delegated to a specific
OVReact i ve instance

OVEvent St ar t Behavi or I d -5 The ID reserved for the OVReact i ve
st art Behavi or event

OVEvent OXFEndEvent | d -6 Used for COM support in terminating the
framework when it is used by multiple COM
servers in different DLLs

See Also

setTimeoutld

478 Frameworks and Operating Systems Reference

OMTimeout Class

iIsNotDelay
Visibility
Public
Description
This method determines whether atimeout event is atimeout delay.
Signature

OvBool ean i sNot Del ay() const

Return
The method returns one of the following Boolean values:

¢ TRUE—Thetimeout is not adelay.
¢ FALSE—Thetimeout isadelay.

new
Visibility
Public
Description
This operator allocates additional memory.

The following macros call this method:

¢ GEN

¢ GEN _BY_GUI

¢ GEN BY X
Signature

void * operator new (size_t size, void * p);
Parameters
size

Specifies the memory required

p
Specifies a pointer to the memory location

Rational Rhapsody 479

OXF Classes and Methods

Notes
¢ Rhapsody overwrites the standard new operator to support its static architecture
during run time.
¢ Rhapsody uses nal | oc and dynamic memory allocation (DMA) during
initialization.
¢ TheDECLARE_MEMORY_ALLOCATOR macro creates the memory pool for
timeouts. The new operator gets memory from the memory pool. The Del et e
operation returns memory to the memory pool.
See Also
DECLARE_MEMORY_ALLOCATOR
Delete
GEN
GEN_BY_GUI
GEN_BY_X
setDelay
Visibility
Public
Description

This method sets the value of Ti neout .

Signature

voi d setDel ay(timeUnit del ay)

Parameters

delay
Specifies the timeout delay, in milliseconds

See Also

getDelay

480 Frameworks and Operating Systems Reference

OMTimeout Class

setDueTime

Visibility

Public
Description

This method specifies the value for the Ti neout attribute.
Signature

voi d setDueTi me(tineUnit newbueTi ne)

Parameters

newDueTime

Specifies the new value for Ti meout
See Also

getDueTime

setRelativeDueTime
Visibility
Public
Description

This method cal culates and sets the due time for atimeout based on the current system time
and the requested delay time. This method is called by the set method.

Signature
voi d setRel ativeDueTi me(tineUnit now)

Parameters

now

Specifies the current system time

See Also

(%]
—+

Rational Rhapsody 481

OXF Classes and Methods

setState
Visibility
Public
Description

This method is used by the framework to set the current state. This method is used for
animation purposes.

Signature

void setState (const OMHandle * s)

See Also

getTimeoutld

482 Frameworks and Operating Systems Reference

OMTimeout Class

setTimeoutld
Visibility

Public

Description

This method specifies the valuefor t i meout | d.

Signature

void setTimeoutld (short

Parameters

id

i d)

Specifiesthe identifier to assigntoti neout I d

Notes

Rhapsody defines several special 1D values, asfollows:

Rhapsody ID Value Description

OVEvent Nul I 1d -1 The null event ID

OvEvent Ti neout 1 d -2 The timeout event ID

OVEvent Cancel | edEvent | d -3 The canceled event ID

OVEvent AnyEvent | d -4 The ID for all events delegated to a
specific OVReact i ve instance

OMEvent St ar t Behavi orl d -5 The ID reserved for the OVReact i ve
st art Behavi or event

OVEvent OXFEndEvent | d -6 Used for COM support in terminating the

framework when it is used by multiple
COM servers

Rational Rhapsody

483

OXF Classes and Methods

OMTimerManager Class

OMTi mer Manager providestimer services for all threads using a single timer task. The class
is declared in the header filet i ner. h.

OMTi mer Manager manages timeout requests and issues timeout events to the system objects.
OMTi mer Manager isasingleton active object. During framework initialization, the singleton
is created and a single new thread is created for managing the timeout requests.

Note

In every Rhapsody-generated application, a separate thread provides timer support for the
application. If your application is single-threaded, the Rhapsody-generated application will
have two threads—one thread for the application and one thread for timer support.

OMThr eadTi mer inheritsfrom OMTi ner Manager and performsthe actual timing servicesfor
the framework and your application. For more information on OMThr eadTi ner, see
OMThreadTimer Class.

OMTi mer Manager can implement two time models:

+ real time—Time advances according to the actual underlying operating system
clock.

+ simulated time—Time advances explicitly, by calling the consumeTime method,
or implicitly, when all reactive objects are idle (they do not have an event in their
event gueue) and thereis at least one pending timeout.

Simulated time is useful for debugging and algorithm validation.

The simulated time support is in run-time (a parameter is provided to the framework in the
application initialization). However, in order to switch between real and simulated time, you
need to regenerate and build the code.

In the current version, simulated time is handled at initialization time, viathei sReal Ti ne
parameter in OXF: : init.

The following methods are used with simulated time mode: init, the
OMTi mer Manager Def aul t s class, goNext (private), and goNextAndPost.

484 Frameworks and Operating Systems Reference

OMTimerManager Class

Attribute Summary

overflowMark Specifies the value used to determine whether the
current system time has “overflowed”

Construction Summary

OMTimerManager Constructs an OMTi mer Manager object

~OMTimerManager Destroys the OMTi mer Manager object

Method Summary

action Sends a matured timeout request to the relevant thread,
where it is then inserted into the thread’s event queue

cbkBridge Is a bridge to get an interrupt from the operating system
via the t i meTi ckCbk (private) method

clearlnstance Cleans up the singleton instance of the timer manager

consumeTime Is used in.simulated time mode to simulate time
consumption

destroyTimer Cleans up the timer manager singleton instance

getElapsedTime Returns the value of m_Ti e, the current system time.

goNextAndPost Is used in simulated time mode

init Starts the timer ticking

initinstance Initializes the singleton instance

instance Creates the singleton instance of the timer manager

resume Is used by the framework to resume the timer during
animation

set Delegates a timeout request to OMTi nmer Manager

setElapsedTime Sets the value of m Ti ne, the current system time

softUnschedTm Removes a specific timeout from the matured list

suspend Is gseq by the framework to suspend the timer during
animation

unschedTm Cancels a timeout request

Rational Rhapsody 485

OXF Classes and Methods

Attributes

overflowMark

This protected attribute specifies the value used to determine whether the current system time
(m_Ti nme) has “overflowed.” m Ti me isimplemented as an unsigned long integer; its
maximum value is implementation-dependent.

It is defined as follows:

RP_FRAMEWORK DLL static const timeUnit
overflowMark;

The timeUnit methodisdefinedinraw ypes. h asfollows:

typedef unsigned long timeUnit;
Thevauefor over f | owvar k isspecifiedinti mer. cpp asfollows:

const timeUnit OMTimerManager::overflowMark =
0x80000000;

Thepost method comparesm Ti ne to over f | owvar k after it gets a pointer to the current
timeout request in the heap. If m Ti me >=over f | owvar k, the post method iterates over the
heap to adjust the dueTi e of each timeout request, and resetsm Ti ne asfollows:

m Time &= ~overflowMark;

Updating dueTi me and m_Ti me uses system resources. You should monitor m Ti me carefully
for your application.

486

Frameworks and Operating Systems Reference

OMTimerManager Class

OMTimerManager
Visibility
Public

Description
This method is the constructor for the OMTi mer Manager class.

Signature

RP_FRAMEWORK DLL OMTimerManager (int ticktime =
OMTimerManagerDefaults::defaultTicktime,
unsigned int maxTM =

OMTimerManagerDefaults: :defaultMaxTM,
OMBoolean isRealTimeModel = TRUE) ;

Parameters

ticktime

Specifies the basic system tick, in milliseconds. At every tick, the Rhapsody framework and
user application are notified that the time was advanced.

Thedef aul t Ti ckt i nme specifies the default tick time, defined int i mer . h asfollows:
static const unsigned defaultTicktine;

The default value is specified in oxf . cpp asfollows:
const unsi gned OMIi mer Manager Def aul ts::
defaul t Ti ckti me = 100;

maxTM
Specifies the maximum number of timeouts that can exist simultaneously in the system. The
value for max TMis used to construct the heap and the matured list for storing timeouts.

Thedef aul t MaxTMisdefinedint i mer . h asfollows:
static const unsigned defaul t MaxTM

The default value is specified in oxf . cpp asfollows:
const unsi gned OMIi mer Manager Defaul ts: :
def aul t MaxTM = 100;

isRealTimeModel

Specifies whether the time model isreal (TRUE) or simulated (FALSE).

Rational Rhapsody 487

OXF Classes and Methods

Notes

See Also

Thedef aul t Ti ckti ne is100 milliseconds. Asyou decreaset i ckti me (for
example, to 50 ms) you get a“finer” timer accuracy, but the thread consumes
more CPU time (because it's a separate thread). In addition, the actions that your
application performs every t i ckt i me aso take time. If you specify avery small
ti ckti me, the system might get into conflicts. You should use 100 milliseconds
for thisvalue.

You can change the default clock tick of 200 milliseconds by editing the value
assigned to def aul t Ti ckt i me in the constructor and then recompiling the OXF
libraries.

You can override the default tick time by setting the Ti mer Resol ut i on property
(under <l ang>_CG : Fr amewor k).

The framework uses max TMto construct a heap and amatured list of timeouts. The
def aul t MaxTM is 100. max TMenables the dynamic framework to provide a
static architecture, thereby avoid dynamic memory allocation during run time. In
addition, a static run-time architecture enables you to easily analyze the system.
Rhapsody static events facilitate real-time and safety-critical systems that do not
reguire (or allow) dynamic memory management during run time. Note, however,
that Rhapsody requires mal | oc during initialization and your application must
support dynamic memory management.

The DECLARE_MEMORY_ALLOCATOR macro creates the memory pool for
timeouts. The new operator gets memory from the memory pool. The Delete
operation returns memory to the memory pool.

To change the value of max TMfor your application, change the def aul t MaxTM
attribute. You can also override the default maximum number of timeouts by
setting the Ti mer MaxTi meout s property (under <l ang>_CG : Fr amewor k).

If your application exceeds nrax TMand triesto create additional timeouts, the
return value will be NULL. You must specify, in advance, the maximum number
of timeouts that can exist together in the system.

DECLARE MEMORY_ALLOCATOR

defaultMaxTM

defaultTicktime

488

Frameworks and Operating Systems Reference

OMTimerManager Class

~OMTimerManager

action

Visibility
Public

Description

The ~OMTimerManager method is the destructor for the OMTi mer Manager class. It deletes
(destroys) the operating system entity that the instance wraps.

Signature

RP_FRAMEWORK _DLL virtual ~OMIi ner Manager () ;

See Also

OMTimerManager

Visibility
Public

Description

The action method sends a matured timeout request to the relevant thread, whereit is then
inserted into the thread’s event queue.

This method is overridden by the OMTrhr eadTi mer : : act i on method.
Signature

RP_FRAMVEWORK DLL virtual void action (
OMTi meout *timeout);

Parameters

timeout

Specifies the timeout request to be sent to the thread

See Also

action

Rational Rhapsody 489

OXF Classes and Methods

cbkBridge
Visibility
Public
Description

The cbkBridge method is a bridge to get an interrupt from the operating system viathe
ti meTi ckCbk (private) method.

This method is defined because the API of most RTOSes expects a C function to handle an
interrupt.

Signature

RP_FRAMEWORK DLL static void cbkBridge (void *me)

Parameters

me

Gets the interrupt fromthet i meTi ckCbk method

clearinstance
Visibility
Public
Description
The clearinstance method cleans up the singleton instance of the timer manager.

Signature

RP_FRAMEWORK DLL static void clearInstance()

490 Frameworks and Operating Systems Reference

OMTimerManager Class

consumeTime
Visibility
Public
Description

The consumeTime method is used in simulated time mode to simulate time consumption. It
increases time incrementally so it can be preempted by other tasks.

Signature

RP_FRAMEWORK DLL void consumeTime (tineUnit interval,
timeUnit step = 1);

Parameters

interval

Definesthetimeinterval used for clock updates.

step

Defines how many intervals to change at each clock update. The default valueis 1.

decNonldleThreadCounter
Visibility
Public
Description

The decNonldleThreadCounter method decreases the nonl dl eThr eadCount er private
attribute.

Signature

RP_FRAMEWORK DLL void decNonIdleThreadCounter ()

See Also

incNonldleThreadCounter

Rational Rhapsody 491

OXF Classes and Methods

destroyTimer
Visibility
Public
Description
The destroyTimer method cleans up the timer manager singleton instance.
Signature

RP_FRAMEWORK DLL void destroyTimer ()

getElapsedTime
Visibility
Public
Description
The getElapsedTime method returns the value of m Ti e, the current system time.

This method is useful for debugging purposes. Using it, you can determine when a state was
entered, when an event was put in the event queue, and so on.

Signature
RP_FRAMEWORK DLL timeUnit getElapsedTime () const

Return
m_Ti me, the current system time
See Also

setElapsedTime

492 Frameworks and Operating Systems Reference

OMTimerManager Class

goNextAndPost
Visibility
Public
Description

The goNextAndPost method is used in simulated time mode. It creates a mutex, then calsthe
goNext method, followed by the post method. Note that goNext and post are private
methods.

Signature

RP_FRAMVEWORK DLL voi d goNext AndPost () ;

incNonldleThreadCounter
Visibility
Public
Description

TheincNonldleThreadCounter method increasesthe nonl dl eThr eadCount er private
attribute.

Signature

RP_FRAMEWORK DLL void incNonIdleThreadCounter ()

See Also

decNonldleThreadCounter

Rational Rhapsody 493

OXF Classes and Methods

init
Visibility
Public
Description
Theinit method starts the timer ticking. It is used by the framework initialization.
Inrea-timemode, i ni t createsan OMOSTi ckTi ner, asfollows:
osTi mer = theOSFactory() ->
creat eOMOSTi ckTi mer (tick, cbkBridge, this);
In simulated time mode, i ni t creates an OMOSI dl eTi ner, asfollows:
osTi mer = theOSFactory() ->
creat eOMOSI dl eTi mer (cbkBridge, this);
Signature
RP_FRAVEWORK DLL virtual void init();
initinstance
Visibility
Public
Description

The initinstance method initializes the singleton instance.

Signature

RP_FRAMEWORK DLL static OMTimerManager* initInstance (
int tickTime =

OMTimerManagerDefaults: :defaultTicktime,
unsigned int maxTM =

OMTimerManagerDefaults: :defaultMaxTM,
OMBoolean isRealTimeModel=TRUE) ;

Parameters

ticktime

Specifies the basic system tick, in milliseconds. At every tick, the Rhapsody framework and
user application are notified that the time was advanced.

494 Frameworks and Operating Systems Reference

OMTimerManager Class

Thedef aul t Ti ckt i nme specifies the default tick time, defined int i mer . h asfollows:
static const unsigned defaultTicktine;

The default value is specified in oxf . cpp asfollows:
const unsi gned OMTi mer Manager Def aul ts: :
defaul t Ti cktime = 100;

maxTM

Specifies the maximum number of timeouts that can exist simultaneously in the system. The
value for max TMis used to construct the heap and the matured list for storing timeouts.

Thedef aul t MaxTMisdefinedint i mer . h asfollows:
static const unsigned defaul t MaxTM

The default value is specified in oxf . cpp asfollows:
const unsi gned OMIi mer Manager Def aul ts::
def aul t MaxTM = 100;

isRealTimeModel

Specifies whether the time model isreal (TRUE) or simulated (FALSE).
instance
Visibility
Public
Description

Theinstance method creates the singleton instance of the timer manager.

Signature

RP_FRAMEWORK DLL static OMTimerManager* instance ()

Rational Rhapsody 495

OXF Classes and Methods

resume
Visibility
Public
Description
Theresume method is used by the framework to resume the timer during animation.
Signature

RP_FRAMEWORK DLL void resume ()

See Also

suspend

496 Frameworks and Operating Systems Reference

OMTimerManager Class

set
Visibility
Public
Description
The set method del egates a timeout request to OMTi mer Manager .
Signature

RP_FRAMEWORK _DLL voi d set (OMIi neout* timeout);

Parameters

timeout

Specifies the timeout event to be delegated to OMTi mer Manager

Notes
¢ Theset methodis called by the schedTm method, defined in ont hr ead. h.
¢ Theset method first locks a mutex, calls setRelativeDueTime to set the due time
for the timeout based on the current value of m Ti ne, then adds the timeout to the
timeout heap.
+ Aftertheset operationiscompleted, the heap contains alist of requested
timeouts, with the first timeout request in the heap scheduled to occur next.
See Also

schedTm

setRelativeDueTime

Rational Rhapsody 497

OXF Classes and Methods

setElapsedTime
Visibility
Public
Description

The setElapsedTime method sets the value of m_Ti ne, the current system time.

Note

Theset El apsedTi ne method is used for debugging purposes to start the timer at a
specific time. This method should be used only with great care.

Signature
RP_FRAMVEWORK DLL voi d set El apsedTinme (tineUnit newTine);
Parameters

newTime

Specifies the new system time
See Also

etElapsedTime

498 Frameworks and Operating Systems Reference

OMTimerManager Class

softUnschedTm
Visibility
Public
Description
The softUnschedTm method removes a specific timeout from the matured list.
This method is called only from ~OMTi nmeout , the timeout destructor.
Signature
RP_FRAMVEWORK _DLL voi d softUnschedTm (OMTIi neout * Ti neout) ;
Parameters

Timeout

Specifies the timeout to remove from the matured list
See Also

~OMTimeout

suspend
Visibility
Public
Description
The suspend method is used by the framework to suspend the timer during animation.
Signature

RP_FRAMEWORK DLL void suspend()

See Also

resume

Rational Rhapsody 499

OXF Classes and Methods

unschedTm
Visibility
Public
Description
The unschedTm method cancels atimeout request.

This method is used when:

¢ Exiting a state—The timeout is no longer relevant.

¢ An object has been destroyed—In this case, al timers associated with the object are
destroyed.

The unschedTmmethod works in the following way:

1. If the OVReact i ve instance does not exist, unsched Tmreturns; otherwise, it invokes a
mutex to protect the following operations:

¢ |fid == OMEventAnyEventld, unschedTmcancels al events whose destination
isthis specific instance of OVReact i ve.

¢ unschedTmcalsthei sCurr ent Event method to determine whether the current
event is delegated to this OVReact i ve. If it is, unschedTmcallsthe
findl nLi st method (private) to locate the timeout in the matured list, then
removes it from the matured list.

2. Next, unschedTmcreates three clones for the following items:

¢ Thetimeout ID, using the setTimeoutld method
¢ Thetimeout destination, using the setDestination method
¢ Thetimeout delay, using the setDelay method

3. TheunschedTmmethod iterates through the heap and calls the Delete method to delete
those timeouts whose destination is the specific OVReact i ve.

4. Finaly, the method looks for matching timeoutsin the matured list. It calls the
fi ndl nLi st method to iterate over the matured list to find matching timeouts. When it
finds one, it calls the setlid method to set the timeout’s ID to OMCancelledEventid, then
removes it from the matured list.

5. Ifid == OMEventTimeoutld, unschedTmcancels only that event.

500 Frameworks and Operating Systems Reference

OMTimerManager Class

Signature

RP_FRAMEWORK _DLL void unschedTm (short id,
OVReactive *c);

Parameters
id
Specifiesthe ID tag of the timeout request.

If OMEventAnyEventld is specified, unschedTmcancels all events whose destination is this
specific instance of OMReact i ve. If OMEventTimeoutld is specified, unschedTmcancels only
that timeout.

(¢}

Specifies a pointer to the OVReact i ve instance requestor. After atimeout has been canceled,
this parameter points to the instance that should be notified.

Notes

+ Canceling atimeout requires one of two actions:
— Déeleting the timeout from the heap.

— Canceling it inside the event queue, if it isaready dispatched. Thisin done by
iterating the event queue.

¢ You can use unschedTmin cases where the statechart implementation is overridden.
¢ unschedTmiscaled by unschedTm (defined in ont hr ead. h).

See Also

OMEventAnyEventld

Delete
setDelay
setDestination

setlld

setTimeoutld

OMEventTimeoutld

Rational Rhapsody 501

OXF Classes and Methods

OMTimerManagerDefaults Class

OMTi mer Manager Def aul t s defines default values for the tick interval (defaultTicktime) and
the maximum number of time ticks before restarting the time tick count (defaultMaxTM).

This classis declared in the header file oxf . h.

Constant Summary

defaultMaxTM Specifies the default for the maximum
number of time ticks before restarting the
time tick count

defaultTicktime Specifies the default for the basic system
tick interval, in milliseconds

Constants
defaultMaxTM

Specifies the default for the maximum number of time ticks before restarting the
timetick count. It is used by the max TMparameter in OMTimerManager, the
constructor for the OMTi mer Manager class.

The default value is specified in oxf . cpp asfollows:

const unsigned OMTimerManagerDefaults::
defaultMaxTM = 100;
static const unsigned defaultMaxTM;

defaultTicktime

Specifies the default for the basic system tick interval, in milliseconds. It is used by
theti ckti me parameter in OMTimerManager, the constructor for the
OMTi nmer Manager class.

The default value is specified in oxf . cpp asfollows:

const unsigned OMTimerManagerDefaults::
defaultTicktime = 100;
static const unsigned defaultTicktime;

502 Frameworks and Operating Systems Reference

OMUADbstractContainer Class

OMUADbstractContainer Class

The OMAbst r act Cont ai ner classisthe base classfor abstract, typeless containers, based on
the template (typed) classes. It includes the friend class OMUI t er at or , which provides a
standard iterator for classes derived from OMUAbst r act Cont ai ner . See OMiterator Class for
more information on iteration methods.

This classis defined in the header file onuabscon. h.

Construction Summary

~OMUADbstractContainer Destroys the OMAbst r act Cont ai ner
object

Method Summary

getCurrent Gets the current element
getFirst Gets the first element in the container
getNext Gets the next element in the container

~OMUADbstractContainer
Visibility
Public
Description

The ~OMUAbstractContainer destroys the OMUAbst r uct Cont ai ner object.

Signature

virtual ~OMUAbstractContainer ()

Rational Rhapsody 503

OXF Classes and Methods

getCurrent
Visibility
Public
Description
The getCurrent method gets the current element in the container.
Signature

virtual void* getCurrent (void* pos) const=0;

Parameters

pos

Specifies the current position

getFirst

Visibility

Public
Description

The getFirst method gets the first element in the container.
Signature

virtual void getFirst (void*& pos) const=0;

Parameters

pos

Specifies the first position in the container

504 Frameworks and Operating Systems Reference

OMUADbstractContainer Class

getNext
Visibility
Public
Description
The getNext method gets the next element in the container.
Signature

virtual void getNext (void*& pos) const=0;

Parameters

pos

Specifies the next position in the container

Rational Rhapsody 505

OXF Classes and Methods

OMUCollection Class

In Rhapsody, onmu* containers are containersthat are not implemented with templates. The use
of template-free containers reduces the size of the generated code considerably. An
OMUCol | ect i on isatypeless, dynamically sized array.

This classis defined in the header file onucol | ec. h.

Attribute Summary

count Specifies the number of elements in the
collection

thelLink Specifies the link to the element in the collection

size Specifies the amount of memory allocated for the
collection

Construction Summary

OMUCollection Constructs an OMJUCol | ect i on object
~OMUCollection Destroys the OMUCol | ect i on object

Method Summary

operator [] Returns the element at the specified position

add Adds the specified element to the collection

addAt Adds the specified element to the collection at the
given index

find Looks for the specified element in the collection

etAt Returns the element found at the specified index

getCount Returns the number of elements in the collection

getCurrent Is used by the iterator to get the element at the
current position in the collection

getFirst Is used by the iterator to get the first position in
the collection

getNext Is used by the iterator to get the next position in
the collection

getSize Gets the size of the memory allocated for the
collection

iIsEmpty Determines whether the collection is empty

506 Frameworks and Operating Systems Reference

OMUCollection Class

remove

Deletes the specified element from the collection

removeAll

Deletes all the elements from the collection

removeBylndex

Deletes the element found at the specified index
in the collection

reorganize Reorganizes the contents of the collection
setAt Inserts the specified element at the given index in
the collection
Attributes
count

This attribute specifies the number of elementsin the collection. It is defined as

follows:

int count;

theLink

This attribute specifies the link to an element in the collection. It is defined as

follows:

void** theLink;

size

This attribute specifies the amount of memory allocated for the collection. Itis

defined as follows

int size;

Rational Rhapsody

507

OXF Classes and Methods

OMUCollection
Visibility
Public
Description
The oMUCollection method is the constructor for the OMUCol | ect i on class.
Signature

OMUCollection (int theSize=DefaultStartSize)

Parameters

theSize

The starting size. The default collection sizeis 20 elements.
See Also

~OMUCollection

~OMUCollection
Visibility
Public
Description
The ~OMUCollection method is the destructor for the OMUCol | ect i on class.
Signature

~OMUCollection ()

See Also

OMUCollection

508 Frameworks and Operating Systems Reference

OMUCollection Class

operator []
Visibility
Public
Description
The[] operator returns the element at the specified position.
Signatures

void * operator[] (int i)

const void * operator(] (int i) const
Parameters
i
The index of the element to return

Return

The element at the specified index, or NULL if you selected an out-of-range value

Rational Rhapsody 509

OXF Classes and Methods

add
Visibility
Public
Description
The add method adds the specified element to the collection.
Signature

void add(void* p)

Parameters

p
The element to add

See Also

addAt

remove

removeAll

removeBylndex

510 Frameworks and Operating Systems Reference

OMUCollection Class

addAt
Visibility
Public
Description
The addAt method adds the specified element to the collection at the given index.
Signature

int addAt (int index, void* p)

Parameters

index

The index at which to add the new element

P
The element to add

See Also
add
remove

removeAll

removeBylndex

Rational Rhapsody 511

OXF Classes and Methods

find
Visibility
Public
Description
Thefind method looks for the specified element in the collection.
Signature

int find(void* p) const

Parameters

p
The element you want to find

Return
The method returns one of the following values:

¢ 0—The éeement was not found in the collection.
¢ 1—The eement was found in the collection.

512 Frameworks and Operating Systems Reference

OMUCollection Class

getAt
Visibility
Public
Description
The getAt method returns the element found at the specified index.
Signature

void* getAt (int i) const
Parameters
i
The index of the element to retrieve

Return

The element found at the specified location

getCount
Visibility
Public

Description

The getCount method returns the number of elements in the collection.

Signature

int getCount () const

Return

The number of elementsin the collection

Rational Rhapsody

513

OXF Classes and Methods

getCurrent
Visibility
Public
Description

The getCurrent method is used by the iterator to get the element at the current position in the
collection.

Signature
void* getCurrent (void* pos) const
Parameters

pos

The position of the element to retrieve
Return

The element at the current position in the collection

getFirst

Visibility

Public
Description

The getFirst method is used by the iterator to get the first position in the collection.
Signature

void getFirst (void*& pos) const

Parameters

pos

The position of the element to retrieve

See Also

getNext

514 Frameworks and Operating Systems Reference

OMUCollection Class

getNext
Visibility
Public
Description
The getNext method is used by the iterator to get the next position in the collection.
Signature

void getNext (void*& pos) const

Parameters

pos

The position of the element to retrieve
See Also

getFirst

getSize
Visibility
Public
Description
The getSize method gets the size of the memory allocated for the collection.

Signature

int getSize () const

Return

The size

Rational Rhapsody 515

OXF Classes and Methods

ISEmpty
Visibility
Public
Description
The isEmpty method determines whether the collection is empty.
Signature

int isEmpty () const

Return
The method returns one of the following values:

¢ 0—Thecollection is not empty.
¢ 1—Thecollection is empty.

516 Frameworks and Operating Systems Reference

OMUCollection Class

remove
Visibility
Public
Description
Theremove method del etes the specified element from the collection.

Signature
void remove (void* p) ;

Parameters

p
The element to delete

See Also

removeAll

removeBylndex

Rational Rhapsody 517

OXF Classes and Methods

removeAll
Visibility
Public
Description
The removeAll method deletes all the elements from the collection.
Signature

void removeAll ()

See Also

remove

removeBylndex

518 Frameworks and Operating Systems Reference

OMUCollection Class

removeBylndex
Visibility
Public
Description
TheremoveByindex method del etes the element found at the specified index in the collection.
Signature

void removeByIndex(int 1)
Parameters
i
Theindex of the element to delete

See Also

remove

removeAll

Rational Rhapsody 519

OXF Classes and Methods

reorganize
Visibility
Public
Description

Thereorganize method enables you to reorganize the contents of the collection, and enlarge it
if necessary.

Signature

void reorganize (int factor = DefaultFactor)

Parameters

factor

The growth factor. The default value is 2.

520 Frameworks and Operating Systems Reference

OMUCollection Class

setAt
Visibility
Public
Description
The setAt method inserts the specified element at the given index in the collection.
Signature

int setAt (int index, const void* p)

Parameters

index

The index at which to add the new element

P
The element to add

Return
The method returns one of the following values:

¢ 0—The method failed.
¢ 1—The method was successful.

Rational Rhapsody 521

OXF Classes and Methods

OMUIterator Class

The OMUI t er at or class provides a standard iterator for containers derived from
OMUADbst r uct Cont ai ner.

This classis defined in the header fileonuabscon. h.

Construction Summary

OMUlterator Constructs an OMUJI t er at or object

Method Summary

operator * Returns the current value of the iterator
operator ++ Increments the iterator
reset Resets the iterator to the first position in

the container

value Returns the current value of the iterator

522 Frameworks and Operating Systems Reference

OMUIlterator Class

OMUIlterator
Visibility
Public

Description

The oMUlterator method is the constructor for the OMUI t er at or class.

Signatures

OMUIterator () ;
OMUIterator (const OMUAbstractContainer& 1)

OMUIterator (const OMUAbstractContainer* 1)

Parameters

1
The container the iterator will visit

operator *
Visibility
Public
Description
The* operator returns the current value of the iterator.
Signature

void* operator* ()

Return

The current value of the iterator

Rational Rhapsody

523

OXF Classes and Methods

operator ++

reset

Visibility
Public
Description
The ++ operator increments the iterator.

The first signature defines the ++ operator used for "++i " usage; the second signature is used
for "i ++".

Signatures
OMUIterator& operator++ () //prefix
OMUIterator operator++ (int i) //postfix
Parameters

i

Dummy parameter

Visibility
Public
Description

Thereset method resets the iterator tp the first position in the container.

Signatures

void reset ()
void reset (OMUAbstractContainer& newLink)
Parameters

newLink

The new position

524

Frameworks and Operating Systems Reference

OMUIlterator Class

value
Visibility
Public
Description
The value method returns the current value of the iterator.
Signature

void* wvalue ()

Rational Rhapsody 525

OXF Classes and Methods

OMULIist Class

In Rhapsody, onmu* containers are containersthat are not implemented with templates. The use
of template-free containers reduces the size of the generated code considerably. An OMULI st

isatypeless, linked list.

This classis defined in the header fileonul i st . h.

Construction Summary

OMUL st Constructs an OMULI st object

~OMUList Destroys the OMULI st object
Flag Summary

first Specifies the first element in the list

last Specifies the last element in the list

Method Summary

operator [] Returns the element at the specified
position.

add Adds the specified element to the end of
the list

addAt Adds the specified element to the list at
the given index

addFirst Adds an element to the beginning of the
list

find Looks for the specified element in the list

etAt Returns the element found at the specified

index

getCount Returns the number of elements in the list

getCurrent Is used by the iterator to get the element
at the current position in the list

getFirst Is used by the iterator to get the first
position in the list

getNext Is used by the iterator to get the next
position in the list

isEmpty Determines whether the list is empty

removeFirst Removes the first item from the list

526

Frameworks and Operating Systems Reference

OMUList Class

remove Deletes the first occurrence of the
specified element from the list

removeAll Deletes all the elements from the list
removeFirst Deletes the first element from the list
removeltem Deletes the specified element from the list
removel ast Deletes the last element from the list

Flags

first

Specifiesthe first element in thelist. It is defined as follows:
OMULi stltent first;

Specifiesthe last element in the list. It is defined as follows:
OMULi stltent |ast;

Example

Consider the following example:

OWiterator iter(itsObserver);

while (*iter)

{
(static_cast<Observer*>(*iter))->notify();
iter++;

Rational Rhapsody 527

OXF Classes and Methods

OMUList
Visibility
Public
Description

The oMUList method is the constructor for the OMULI st class. The method creates an empty
list.

Signature

OMUList ()

See Also

~OMUL ist

~OMUList
Visibility
Public
Description
The ~omUList method empties the list.
Signature

virtual ~OMUList ()

See Also

OMUL ist

528 Frameworks and Operating Systems Reference

OMUList Class

operator []
Visibility
Public
Description
The[] operator returns the element at the specified position.
Signature
void * operator([] (int i) const
Parameters
i

The index of the e ement to return

Rational Rhapsody 529

OXF Classes and Methods

add
Visibility
Public
Description
The add method adds the specified element to the end of thelist.
Signature

void add(void *p)

Parameters

p
The element to add to the list

See Also

addAt

addFirst

remove

removeAll
removeFirst

removel ast

530 Frameworks and Operating Systems Reference

OMUList Class

addAt
Visibility
Public
Description
The addAt method adds the specified element to the list at the given index.
Signature

void addAt (int i, void* p)
Parameters
i
Thelist index at which to add the element

P
The element to add

See Also
add
addFirst
remove
removeAll

removeFirst

removelast

Rational Rhapsody 531

OXF Classes and Methods

addFirst
Visibility
Public

Description

The addFirst method adds an element to the beginning of thelist.
Signature

void addFirst (void *p)

Parameters

p
The element to add to the beginning of thelist

See Also

remove
removeAll
removeFirst

removel ast

532 Frameworks and Operating Systems Reference

OMUList Class

find
Visibility
Public
Description
Thefind method looks for the specified element in the list.
Signature

int find(const void* p) const

Parameters

p
The element you want to find

Return
The method returns one of the following values:

¢ 0—Thedement was not found in the list.
¢ 1—Theedement wasfound inthelist.

Rational Rhapsody 533

OXF Classes and Methods

getAt
Visibility
Public
Description
The getAt method returns the element found at the specified index.
Signature

void* getAt (int i) const
Parameters
i
The index of the element to retrieve

See Also

getCount
getCurrent
getFirst

getNext

534 Frameworks and Operating Systems Reference

OMUList Class

getCount
Visibility
Public
Description
The getCount method returns the number of elementsin the list.
Signature

int getCount () const

Return

The number of eementsin the list

getCurrent
Visibility
Public
Description

The getCurrent method is used by the iterator to get the element at the current position in the
list.

Signature

virtual void* getCurrent (void* pos) const

Parameters

pos

The position of the element you want to retrieve

Rational Rhapsody 535

OXF Classes and Methods

getFirst
Visibility
Public
Description
The getFirst method is used by the iterator to get the first position in the list.
Signature

virtual void getFirst (void*& pos) const

Parameters

pos

The position
See Also

getNext

getNext
Visibility
Public
Description
The getNext method is used by the iterator to get the next positionin the list.
Signature

virtual void getNext (void*& pos) const

Parameters

pos

The position
See Also

getFirst

536 Frameworks and Operating Systems Reference

OMUList Class

ISEmpty
Visibility
Public
Description
The isEmpty method determines whether the list is empty.
Signature

int isEmpty () const

Return
The method returns one of the following values:
¢ 0—Thelist isnot empty.

¢ 1—Thelistisempty.

_removeFirst
Visibility
Public
Description
The _removeFirst method removes the first item from the list.

Note

It is safer to use the method removeFirst because that method has more checks than
removeFirst.

Signature

inline void _removeFirst ()

See Also

removekFirst

Rational Rhapsody 537

OXF Classes and Methods

remove
Visibility
Public
Description
Theremove method del etes the first occurrence of the specified element from the list.
Signature

void remove (const void* p)

Parameters

p
The element to delete

See Also

removeAll
removeFirst

removel ast

538 Frameworks and Operating Systems Reference

OMUList Class

removeAll
Visibility
Public
Description
The removeAll method deletes all the elements from the list.
Signature

void removeAll ()

See Also

remove
removekFirst

removel ast

removeFirst
Visibility
Public

Description

The removeFirst method deletes the first element from the list.

Signature

void removeFirst ()

See Also

remove
removeAll

removel ast

Rational Rhapsody

539

OXF Classes and Methods

removeltem
Visibility
Public
Description
Theremoveltem method del etes the specified element from the list.
Signature

void removeltem(const OMUListItem* item)

Parameters

item

The element to delete

See Also

remove
removeAll

removel ast

540 Frameworks and Operating Systems Reference

OMUList Class

removelast
Visibility
Public
Description

The removel ast method deletes the last element from thelist.

Note

This method is not efficient because the Rhapsody framework does not keep backward
pointers. It is preferable to use one of the other r enove functions to del ete elements from
thelist.

Signature

void removelast ()

See Also

remove
removeAll

removeltem

Rational Rhapsody 541

OXF Classes and Methods

OMULIistltem Class

The OMULI st | t emclassisahelper classfor OMULI st that contains functions that enable you
to manipulate list elements.

This classis defined in the header fileonul i st . h.

Construction Summary

OMUListltem Constructs an OMULI st | t emobject

Method Summary

connectTo Connects to the specified item in the list
getElement Gets the list element
getNext Gets the next item in the list
setElement Sets the specified list element
OMUListltem
Visibility
Public
Description

The oMUListitem method is the constructor for the OMULi st | t emclass.
Signature
OMUListItem(void* theElement)
Parameters

theElement

The new list e ement

542 Frameworks and Operating Systems Reference

OMUListltem Class

connectTo
Visibility
Public

Description

The connectTo method connects to the specified itemin the list.

Signature

void connectTo (OMUListItem* item)

Parameters
item
The item to connect to
getElement
Visibility
Public

Description

The getElement method gets the list element.

Signature

void* getElement () const
getNext
Visibility
Public

Description

The getNext method gets the next item in the list.

Signature

OMUListItem* getNext () const

Return

The next item in the list

Rational Rhapsody

543

OXF Classes and Methods

setElement
Visibility
Public
Description
The setElement method sets the specified list element.
Signature

void setElement (void* p)

Parameters

p
The list element to set

544 Frameworks and Operating Systems Reference

OMUMap Class

OMUMap Class

In Rhapsody, onmu* containers are containersthat are not implemented with templates. The use
of template-free containers reduces the size of the generated code considerably. An OMUMap is

atypeless map.

Thisclassis defined in the header file omumap. h.

Construction Summary

OMUMap Constructs an OMUMap object
~OMUMap Destroys the OMJUMap object

Method Summary

operator [] Returns the element found at the specified
location

add Adds an element to the map

find Determines whether the specified element is in
the map

getAt Returns the element for the specified key

getCount Returns the number of elements in the map

getKey Gets the element for the specified key

ISEmpty Determines whether the map is empty

lookUp Looks for the specified element in the map

remove Deletes the specified element from the map

removeAll Deletes all the elements from the map

removeKey Deletes the element from the map, given its key

Rational Rhapsody

545

OXF Classes and Methods

OMUMap
Visibility
Public
Description
The oMuMap method is the constructor for the OMUMap class.
Signature

OMUMap ()

See Also

~OMUMap

~OMUMap
Visibility
Public
Description

The ~omUMap method destroys the OMUMap object.

Signature

~OMUMap ()
See Also

OMMap

546 Frameworks and Operating Systems Reference

OMUMap Class

operator []
Visibility
Public
Description
The[] operator returns the element at the specified key.
Signature

void* operator[] (void* theKey) const

Parameters

theKey
The key of the element to get

Return

The element at the specified key

Rational Rhapsody 547

OXF Classes and Methods

add
Visibility
Public
Description
The add method adds the specified element to the given key.
Signature

void add(void* theKey, void* p);

Parameters

theKey
The map key to which to add the element

p
The element to add to the key

See Also

remove

removeAll

removeKey

548 Frameworks and Operating Systems Reference

OMUMap Class

find

getAt

Visibility

Public
Description

Thefind method determines whether the specified element isin the map.
Signature

int find(void* p) const

Parameters

p
The element to look for

Return
The method returns one of the following values:

¢ 0—Theelement was not found in the map.
¢ 1—Theelement was found.

Visibility

Public
Description

The getAt method returns the element for the specified key.
Signature

void* getAt (const void* theKey) const

Parameters

theKey

The key for the element to get

Rational Rhapsody 549

OXF Classes and Methods

getCount
Visibility
Public
Description
The getCount method returns the number of elementsin the map.
Signature

int getCount () const

Return

The number of elementsin the map

getKey
Visibility
Public
Description
The getkey method gets the element for the specified key.
Signature

void* getKey (const void* theKey) const

Parameters

theKey

The map key whose element you want

550 Frameworks and Operating Systems Reference

OMUMap Class

ISEmpty
Visibility
Public
Description
The isEmpty method determines whether the map is empty.
Signature

int isEmpty () const

Return
The method returns one of the following values:

¢ 0—The map isnot empty.
¢ 1—Themapisempty.

lookUp
Visibility
Public
Description

ThelookUp method finds the specified element in the map, given its key. If the element is
found, the method places the contents of the element referenced by the key in the el enent
parameter, and returns the value 1.

Signature

int lookUp (const void* theKey, void*& element) const

Parameters

theKey
The map key

element

The element to look up
Return

The method returns one of the following values:

Rational Rhapsody 551

OXF Classes and Methods

¢ 0—The element was not found in the map.
¢ 1—The element was found.

remove
Visibility
Public
Description
Theremove method del etes the specified element from the map.
Signature

void remove (void* p)

Parameters

p
The element to delete

See Also
add

removeAll

removeKey

552 Frameworks and Operating Systems Reference

OMUMap Class

removeAll
Visibility
Public
Description
TheremoveAll method deletes all the elements from the map.
Signature

void removeAll ()

See Also

QD
(o

remove

removeKey

removeKey

Visibility

Public
Description

Theremovekey method deletes the element from the map, given its key.
Signature

void removeKey (void* theKey)

Parameters

theKey

The key for the element to delete
See Also
add

remove

removeAll

Rational Rhapsody 553

OXF Classes and Methods

OMUMapltem Class

The OMUMap! t emclassis ahelper class for OMUMap that contains functions that enable you to
manipulate map el ements.

This classis defined in the header file onumap. h.

Construction Summary

OMUMapltem Constructs an OMUMapl t emobject
~OMUMapltem Destroys the OMUMapl t emobject

Method Summary

‘ getElement Returns the current element

OMUMapltem
Visibility
Public
Description
The oMUMapltem method is the constructor for the OMUMapl t emclass.
Signature
OMUMapItem(void* theKey, void* theElement)
Parameters

theKey

The map key

theElement

The new map element
See Also

~OMUMapltem

554 Frameworks and Operating Systems Reference

OMUMapltem Class

~OMUMapltem
Visibility
Public
Description
The ~OMUMapltem method destroys the OMUMapI t emobject.
Signature

virtual ~OMUMapItem /()

See Also

OMMapltem

getElement
Visibility
Public
Description
The getElement method returns the current element.
Signature

void* getElement ()

Return

The current element

Rational Rhapsody 555

OXF Classes and Methods

OXF Class

The oxf . h file defines general API classes used by the execution framework.

Method Summary

animDereqgisterForeignThread Unregisters the external thread

animReaqisterForeignThread Registers an external thread (not an
OMThr ead) in the animation framework

delay Delays the calling thread for the specified
length of time

end Ends the event processing of the default
event dispatching thread

getMemoryManager Returns the current framework memory
manager

getTheDefaultActiveClass Returns the default active class

getTheTickTimerFactory Returns the low-level timer factory

init Initializes the timer, creates the default

event dispatching thread, and initializes
the framework

setMemoryManager Specifies the current framework memory
manager
setTheDefaultActiveClass Registers an alternate default active

object on the framework

setTheTickTimerFactory Registers a timer factory on the
framework, causing the framework to use
the user-defined timers instead of the
predefined timers

start Starts the event processing of the default
event dispatching thread

556 Frameworks and Operating Systems Reference

OXF Class

animDeregisterForeignThread
Visibility
Public
Description

The animDeregisterForeignThread method unregisters the external thread.

Signature
static void animDeregisterForeignThread (void* theHandle) ;

Parameters

theHandle
Specifies the handle to the external thread to unregister

See Also

animReqisterForeignThread

Rational Rhapsody 557

OXF Classes and Methods

animRegisterForeignThread
Visibility
Public
Description

The animRegisterForeignThread method registers an external thread (not an OMThr ead) in the
animation framework.

Signature

static void animRegisterForeignThread (char * name,
void* theHandle) ;

Parameters

name

Specifies the name of the external thread

theHandle
Specifies the handle to the thread

See Also

animDereqgisterForeignThread

558 Frameworks and Operating Systems Reference

OXF Class

delay
Visibility
Public
Description
The delay method delays the calling thread for the specified length of time.
Signature

static void delay (timeUnit t);

Parameters

t

Specifies the delay, in milliseconds

end
Visibility
Public
Description

The end method closes the framework-dependent parts in the application, without closing the
application.

This method was added to support Microsoft COM technology, and is fully implemented for
Microsoft adapters only.

Signature

static void end() ;

See Also

Rational Rhapsody 559

OXF Classes and Methods

getMemoryManager
Visibility
Public
Description

The getMemoryManager method returns the current framework memory manager.

Signature

static OMAbstractMemoryAllocator* getMemoryManager ()

Return
The framework memory manager
See Also

setMemoryManager

getTheDefaultActiveClass
Visibility
Public
Description

The getTheDefaultActiveClass method returns the default active class.

Signature

static OMThread* getTheDefaultActiveClass()

Return
The default active class
See Also

setTheDefaultActiveClass

560 Frameworks and Operating Systems Reference

OXF Class

getTheTickTimerFactory
Visibility
Public
Description

The getTheTickTimerFactory method returns the low-level timer factory.

Signature

static const OMAbstractTickTimerFactory*
getTheTickTimerFactory ()

Return
t heTi ckTi ner Fact ory
See Also

setTheTickTimerFactory

Rational Rhapsody 561

OXF Classes and Methods

init
Visibility
Public
Description

In instrumented code, init initializes the framework instances that need to be available for the
application built on top of the framework.

This method must be called before any other framework-related code is executed.

Note

Youmust call OXF: :init() inaDLL evenif the application loading the DLL has called
OXF: :init(); otherwise, there will be aleak in the state machine thread handle.

Signature

static int init (
i nt nunProgArgs 0,
char **progArgs NULL,
unsigned int defaultPort = O,
const char* defaul t Host = NULL,
unsi gned ticktime =
OMTi mer Manager Def aul t s: : def aul t Ti ckti ne,
unsi gned maxTM =
OMTi mer Manager Def aul t s: : def aul t MaxTM
OMBoolean isRealTimeModel = TRUE) ;

Parameters

numProgArgs

Specifies the number of program arguments.

pProgArgs

Specifiesthe list of program arguments.

defaultPort

I's an animation-specific parameter that specifies the port used for communicating with the
animation server.

If you are using an animation port other than 6423 (the default value), this number must match
that assigned to the Ani mat i onPor t Nunber variablein your rhapsody. ini file.
defaultHost

I's an animation-specific parameter that specifies the default host name of the machine on
which Rhapsody is running.

562 Frameworks and Operating Systems Reference

OXF Class

tickTime

Specifies the basic system tick in milliseconds. Every ticktime, the framework timeout
manager checks for expired timeouts. The default ticktimeis every 100 milliseconds.

You can override the default tick time by setting the
<l ang>_CG : Franmewor k: : Ti mer Resol ut i on property.
maxTM

Specifies the maximum number of timeouts (set or matured) that can coexist in the
application. The default valueis 100 timeouts.

You can override the default maximum number of timeouts by setting the
<l ang>_CG : Framewor k: : Ti mer MaxTi meout s property.

isRealTimeModel

Specifies whether the model runsin real time (the default) or simulated time. The default value
isreal time.

OMTi mer Manager can implement two time models:

+ real time—Time advances according to the actual underlying operating system clock.

¢ simulated time—Time advances either explicitly, by calling the consumeTime method or
implicitly, when al reactive objects areidle (that is, they do not have an event in their
event gueue) and thereis at least one pending timeout.

Simulated time is useful for debugging and algorithm validation.

Rational Rhapsody 563

OXF Classes and Methods

setMemoryManager
Visibility
Public

Description

The setMemoryManager method specifies the current framework memory manager. It controls
memory alocated in the framework at the application level (for example, when adding an
object to arelation implemented as OMLi st). If you do not register a memory manager, the
framework uses the global new and del et e operators.

To have an effect, call this method before making any memory allocation requests, or compile
the framework with the OM_ENABLE_MEMORY_MANAGER _SW TCH compiler flag.

Signature

static OMBoolean setMemoryManager (
OMAbstractMemoryAllocator* const memoryManager) ;

Parameters

memoryManager

Specifies the new framework memory manager
Return

The method returns TRUE if the memory manager was set successfully. Otherwise, it returns
FALSE.

See Also

getMemoryManager

564 Frameworks and Operating Systems Reference

OXF Class

setTheDefaultActiveClass
Visibility
Public

Description

The setTheDefaultActiveClass method registers an alternate default active object instead of the
OWMai nThr ead singleton. Thisis useful when you customize the behavior of application
active classes.

To have an effect, the user factory must be registered before the framework initialization
(OXF: : init) and before any request of the default active classis made.

Signature

static OMBoolean setTheDefaultActiveClass (OMThread* t);

Parameters

t

Specifies the new default active class
Return

The method returns TRUE if the active object was set successfully. Otherwise, it returns
FALSE.

See Also

getTheDefaultActiveClass

init

Rational Rhapsody 565

OXF Classes and Methods

setTheTickTimerFactory
Visibility
Public

Description

The setTheTickTimerFactory registers atimer factory on the framework, causing the
framework to use the user-defined timers instead of the predefined timers. You can register a
timer factory that does not create any timers, causing the timing mechanisms of the framework
to be disabled. For example:

disable tm()

To have an effect, the user factory must be registered before the framework initialization
(OXF: : init).

Note
You can set the low-level timer factory only once for the entire lifetime of the application.

Signature

static OMBoolean setTheTickTimerFactory (
const OMAbstractTickTimerFactory* factory);

Parameters

factory

Specifies the new low-level timer factory
Return

The method returns TRUE if the active object was set successfully. Otherwise, it returns
FALSE.

See Also

getTheTickTimerFactory

init

566 Frameworks and Operating Systems Reference

OXF Class

start
Visibility
Public
Description

The start method starts the event processing of the active class (by default, the

OWMai nThr ead singleton). The doFork parameter determines whether the current thread (the
caller of init) isthe default event dispatching thread or a new, separate thread. If doFor k is
FALSE, OXF: : start will not return, unless the default active classis destroyed.

OXF: : start does not return in the generated application (this can be controlled via a Rhapsody
property). Even if al statecharts terminate, it still runs. Thisis because the framework was
specifically written for embedded applications, which generally do not end. Use Ctrl+C to kill
the application.

Signature
static void start(int doFork = FALSE)
Parameters

doFork

Determines whether the current thread (the caller of init) isthe default event dispatching thread
or aseparate thread. If doFor k is TRUE, the control returnsto the caller; otherwise, control
remainsin OXF: : start for the lifetime of the application.

The syntax is asfollows:

i nt doFork = FALSE

This parameter is useful in environments such as M'S Windows, where the root thread has its
own “agenda’ (for example, GUI processing).

Rational Rhapsody 567

OXF Classes and Methods

568 Frameworks and Operating Systems Reference

Index

Symbols

I= operator 428
* operator
OM lterator 269
OMString 432
OMUlterator 523
+ operator
OMString 422
++ operator
OM lterator 270
OMUlterator 524
+= operator 423
< operator
OMString 430
<< operator 431
<= operator
OMString 427
= operator 424
== operator
OMString 425
OMTimeout 473
> operator
OMString 429
>= operator 426
>> operator 431
[] operator
OMList 280
OMStaticArray 414
OMString 421
OMUMap 547
_gen 364
_removeFirst
OMList 288
OMUList 537
~OMADbstractMemoryAllocator destructor 212
~OM Collection destructor 222
~OMDelay destructor 231
~OMEvent destructor 239
~OMGuard destructor 261
~OMHeap destructor 264
~OMList destructor 279
~OMMainThread destructor 295
~OMMap destructor 301
~OMMapltem destructor 310
~OMMemoryManager destructor 314
~OMMemoryManagerSwitchHelper 319

~OM Protected destructor 334
~OMQueue destructor 341
~OMReactive destructor 357

~OM Stack destructor 397

~OM StaticArray destructor 413
~OM String destructor 421
~OMThread destructor 444
~OMThreadTimer destructor 466
~OMTimeout destructor 473
~OMTimerManager destructor 489
~OMUAbstractContainer destructor 503
~OMUCollection destructor 508
~OMUList destructor 528
~OMUMap destructor 546
~OMUMapltem destructor 555

A

Abstraction layer 5
action
OMThreadTimer class 466
OMTimerManager class 489
Active
attribute 351
getTheDefaultActiveClass 560
isActive 370
object 177
setTheDefaultActiveClass 565
Activity diagrams 179, 182, 183, 347
Adalanguage 21
framework for animation 21
Adapters 5
classes 5, 6, 18
operating systems 7
validating new 30
add
OMCollection 223
OMHeap 265
OMList 280
OMMap 303
OMStaticArray 415
OMUCallection 510
OMUList 530
OMUMap 548
addAt
OMCaollection 223

Rational Rhapsody

569

Index

OMList 281
OMUCollection 511
OMUList 531
addFirst
OMList 282
OMUList 532
Additional NumberOflnstances property 9
Algorithms
event consumption 178
FIFO 186, 337
LIFO 186, 396
testing code 11
validation 484
Allocate
alocPool 213
new 479
OMSdfLinkedMemoryAllocator 215
setAllocator 216
alocPool 213
allowDeletelnThreadsCleanup 445
AMemAloc.hfile 27
Analyze 199
Animated statecharts 199
Animation
Adaframework 21
animDeregisterForeignThread 557
animRegisterForeignThread 558
aomthread attribute 440
Arrays 186
fixed size 186
OMStatic 27, 28
OMStaticArray 411
Attributes 351
active 351
aomthread 440
component 272
count 412
deleteAfterConsume 236
destination 236
eventConsumed 352
eventNotConsumed 352
eventQueue 441
frameworkEvent 236
frameworklnstance 351
Ild 237
m_grow 338
m_head 338
m_myQueue 338
m_tall 338
myStartBehaviorEvent 351
OMDefaultThread 353
OMEvent class 237
OMEventAnyEventld 237
OMEventCancelledEventld 237
OMEventNullld 237
OMEventOXFEndEventld 238
OMEventTimeoutld 238

omrStatus 352

OM StartBehavior_id 238
OMThread class 440
OMTimeout class 471
OMTimerManager 486
overflowMark 486
parent 402

rootState 356

size 412

theLink 412

thread 441
toGuardReactive 352
toGuardThread 441

B

BaseNumberOflnstances property 9
Batch files 167
editing 160
Behavior 177
customizing timeout manager 184
implement reactive 3
package 4
startBehavior 391
Blocks
new 214
SetDefaultBlock 436
Bridge
cbkBridge 490
BSP 450
Buffer
GetBuffer 433

C

C language 20
classes 38
IDF 203
libraries 17, 21
methods 38
RiCOSConnectionPort class 39
RiCOSemaphore class 67
RiCOSEventFlag Interface class 45
RiCOSM essageQueue class 50
RiCOSMutex class 59
RiCOSOXF class 64
RiCOSSocket class 73
RiCOSTask class 80
RiCOSTimer class 93
run-time source files 13
tracing libraries 15
tracing services 17

C++ language 20
classes 98
libraries 16, 21
OMEEventQueue class 98
OMM essageQueue class 100

570

Frameworks and Operating Systems Reference

Index

OMOSclass 100
OMOSConnectionPort class 102
OMOSFactory class 108
OMOSMessageQueue class 117
OMOSMutex class 123
OMOSSemaphore class 126
OMOSSocket class 129
os.cpp file 29
rebuild OXF for OSE 159
run-time source files 13

Callback functions 165

Cadllbacks 217
timer manager 217
TimerManagerCallBack 219

callMemoryPool IsEmpty 213

Cdls 8
execute sequence of 191
lock and free 59

Cancel
cancel Events OMReactive class 358
cancel Events OMThread class 446
IsCancelledTimeout 242
single event 192

cancelEvent 445

cancelEvents
OM Resactive 358
OMThread class 446

cbkBridge 490

Classes
active but not reactive 177
adapter 5, 18
C++ 98
consuming events without SCs 178
getEventClass OMFriendStartBehaviorEvent 253
getEventClass OMFriendTimeout 256
getTheDefaultActiveClass 560
OMAbstractMemoryAllocator 212
OMADbstractTickTimerFactory 217
OMCallection 221
OM ComponentState 227
OMDelay 230
OMEEventQueue 98
OMEvent 233
OMFriendTimeout 255
OMGuard 258
OMHeap 263
OMInfiniteLoop 268
OMIterator 268
OMList 276
OMListltem 292
OMMainThread 294
OMMap 297
OMMapltem 309
OMMemoryManager 311
OMMemoryManagerSwitchHelper 318
OMMessageQueue 100
OMOrState 327

OMOS 100
OMOSConnectionPort 102
OMOSEventFlag 105
OMOSFactory 108
OMOSMessageQueue 117
OMOSMutex 123
OMOSSemaphore 126
OMOSSocket 129
OMProtected 332
OMQueue 337
OMReactive 347
OMStack 186, 396
OM StartBehaviorEvent 400
OM State 401
OMStaticArray 186, 411
OMString 419
OMThread 437
OMThreadTimer 465
OMTimeout 469
OMTimerManager 484
OMTimerManagerDefaults 502
OMUAbstractContainer 503
OMUCallection 506
OMUlterator 522
OMUList 526
OMUListltem 542
OMUMap 545
OMUMapltem 554
OSAL 37
RiCOSConnectionPort 39
RiCOSemaphore 67
RiCOSEventFlag Interface 45
RiCOSM essageQueue 50
RiCOSMutex 59
RiCOSOXF 64
RiCOSSocket 73
RiCOSTask 80
RiCOSTimer 93
RTOS 12
SCsfor documentation 178
setTheDefaultActiveClass 565

Cleanup 320
AllThreads 447
Thread 447

clearlnstance 490

CM tools
Integrity 146

Code
generate implementation 5
generation properties 24, 26

Collections 338, 511
adding elements 223
adding template-free 510
creating 222
creating template-free 508
destroying 222
destroying template-free 508

Rational Rhapsody

571

Index

finding an element 512 OMHeap 264

removing all elements 225 OM lterator 269

removing elements 224 OMLeafState 273

removing elements by index 226 OMList 279

reorganizing 226 OMListltem 292
Command-line OMMap 301

attributes 159 OMMapltem 309

flags 159 OMMemoryManager 314
Commands OMMemoryManagerSwitchHelper 319

al 16 OMOrState 328

build framework librariesfor C or C++ 21 OMProtected 333

definitions 171 OMQueue 341

make 16 OMReactive 357

RHAP_FLAGS 16 OMStack 396
Communication link 8 OM StartBehaviorEvent 400
Communication ports 5, 9 OM State 403
CompareNoCase 432 OMStaticArray 413
Compilation OMString 420

flags 170 OMThread 442
Compilers 5 OMTimeout 472

environments 13 OMTimerManager 487

Forte 23 OMUCollection 508

GNAT 21 OMUlterator 523

GNU 23 OMUList 528

Green Hills 19 OMUListitem 542

memory allocation control 312 OMUMap 546

Microsoft 20 OMUMapltem 554

multiple installed 22 consumeEvent 358

native 30 consumeTime 491

path to 23 Consumption

provided cross 14 handleEventNotConsumed 366
CompileSwitches property 170 handleTONotConsumed 367
Complete isDeleteAfterConsume 242

runToCompletion 379 modifying 178

shouldCompleteRun 387 of triggered events 393
Component attribute 272 setDeleteAfterConsume 246
Concept Container types 186

getFirstConcept 285 OMADbstractContainer 186

getLastConcept 286 OMCollection 186

OMFina State 251 OMHeap 186

OMMapltem 310 OMlterator 186

OM State 404 OMList 186
Configurations OMMap 186

active 147 OMQueue 186
connectTo OMStack 186

OMListltem 293 OMStaticArray 186

OMUListltem 543 OMString 186
Constructors Containers 186

OMAnNdState 219 Containers package 185

OMCaollection 222 CORBA 234

OM ComponentState 228 Count

OMDelay 231 elements 397

OMEvent 238 getCount 284

OMFina State 250 getCount OMMap 305

OMFriendStartBehaviorEvent 252 getCount OM StaticArray 416

OMFriendTimeout 255 getCount OMUCollection 513

OMGuard 261 getCount OMUL.ist 535

572 Frameworks and Operating Systems Reference

Index

getCount OMUMap 550 canceling eventsto 192
count attribute 412 getting 240
createReal TimeTimer 217 setting 247
createSimulatedTimeTimer 218 destroyThread
cseridize OMMainThread class 295
OMFriendStartBehaviorEvent class 253 OMThread class 448
OMFriendTimeout 256 destroyTimer 492
Current Destructors
event 371 ~OMCaollection 222
getCurrentEvent 365 ~OMDelay 231
OMList 284 ~OMEvent 239
Customizing ~OMGuard 261
automated behavior code 3 ~OMHeap 264
framework 3, 201 ~OMList 279
instalation for OS/RTOS 11 ~OMMainThread 295
OMThread 181 ~OMMap 301
operator 432 ~OMMapltem 310
timeout framework behavior 184 ~OMMemoryManager 314
~OMProtected 334
D ~OMQueue 341
~OMReactive 357
Debug 199 ~OMStack 397
Debugging 484 ~OMStaticArray 413
DECLARE_MEMORY_ALLOCATOR macro 471 ~OMString 421
decNonldleThreadCounter 491 ~OMThread 444
Decrement ~OMThreadTimer 466
null transitions 374 ~OMTimeout 473
Default ~OMTimerManager 489
getTheDefaultActiveClass 560 ~OMUCollection 508
setTheDefaultActiveClass 565 ~OMUList 528
transition 377 ~OMUMap 546
defaultHost 562 ~OMUMapltem 555
defaultMaxTM constant 502 OMADbstractMemoryAllocator 212
defaultPort 562 OMUAbstractContainer 503
defaultTicktime constant 502 Development environment 24
Defines 165 Diagrams
Delay 559 activity 179, 182, 183, 347
getDelay 477 object model 8
isNotDelay 479 sequence 108, 196, 199
setDelay 480 statecharts 2, 179, 182, 183, 199, 347
timeout 197 discarnateTimeout 360
Delete Dispatch
isDel eteAfterConsume 242 event 191
OMEvent 240 rootState dispatchEvent 376
setDel eteAfterConsume 246 stopping 373
setShouldDel ete 383 timeout 184
shouldDelete 389 timeout SD 196
Timeout 476 triggered operation 193
deleteAfterConsume attribute 236 dispatched timeout 196
deleteMutex 334 doBusy 361
Dependencies 173 doExecute 448
Deployment environment 5 DTOR
Deregister isinDtor 373
animDeregisterForeignThread 557 SetEndOSThreadinDtor 458
Derived event 245 setinDtor 382
Destination START_DTOR_REACTIVE_GUARDED_SECTIO
attribute 236 N 259

Rational Rhapsody 573

Index

Duetime 183
getting 477
relative 481
setting 481

E

Eclipse
Momentics IDE 162
Elements
adding to collections 223
adding to template-free collections 510
adding to template-free collections at a given
location 511
getElement OMUListItem 543
getElement OMUMapltem 555
remove al from static array 418
remove from heap 266
remove from list 288
remove from template-free list 538, 539
remove from template-free map 552, 553
removing 224
removing al from collections 225
removing all from template-free collections 518
removing from template-free collections 517
setElement 544
Empty 433
end 559
END_REACTIVE_GUARDED_SECTION macro 259
END_THREAD_GUARDED_SECTION macro 259
endOfProcess flag 440
entDef
OML eaf State 273
OMOrState 328
OM State 403
enterState
OM ComponentState 228
OM L eaf State 274
OMOrState 328
OMState 404
entHist 403
EntryPoint property 166
Environment
property 25, 26
setting the new 26
Environment property 26
Environments
changing target 145
deployment 5
for development 24
Event
setEventGuard 380
Event flag 45
Event loop 191
Event queue
omGetEventQueue 454
versus communication port 9

event relation 355
event.cpp file 27
event.hfile 27
eventConsumed 352
eventNotConsumed 352
eventQueue attribute 441
Events 182, 189
cancelEvent 445
cancel Events 358
cancel Events OMThread class 446
canceling asingle 192
canceling all 192
canceling al events 192
consumeEvent 358
consumption algorithm 178
creating 190
current 371
derived 245
dispatching 191
flag 105
generate & queue 190
generating 190
generic handling 402
getCurrentEvent 365
getEventClass OMFriendTimeout 256
getEventQueue 451
handleEventNotConsumed 366
handling 189
isFrameworkEvent 243
isReal Event 244
modifying consumption 178
OMPFriendStartBehaviorEvent 252, 253
OMReactive 392
processing loop 448
queueEvent 455
queuing 190
rootState_dispatchEvent 376
setFrameworkEvent 247
stopping dispatch 382
synchronous 8
takeEvent OM ComponentState 229
takeEvent OM State 410
Example
OMList 278
OMMap class 298
OMQueue class 339
OMStaticArray 412
OMUList 527
Execute 449
doExecute 448
exitState
OMLeaf State 274
OMOrState 329
OM State 404
External thread
animRegisterForeignThread 558
deregistering 557

574

Frameworks and Operating Systems Reference

Index

F

Factory

getTheTickTimerFactory 561
setTheTickTimerFactory 566

Features dialog box 27

FI
Fi

configuration 26
Environment 147
Instrumentation Mode 147
FO algorithm 186, 337
les

.mak 145

batch 14, 160, 167
event.cpp 27
event.h 27

make 5
MemAlloc.h 27
omabscon.h 27
omcollec.h 27
omcon.h 27
omheap.h 27
omlist.h 27
ommap.h 27
omoutput.cpp 28
omoutput.h 28
omprotected.h 28
omqueue.h 28
omreactive.cpp 28
omreactive.h 28
omstack.h 28
omstatic.h 28
omstring.cpp 28
omstring.h 28
omthread.cpp 28
omthread.h 28
omtypes.h 28
os.cpp file 29
os.h 28

os.h 29

oxf.cpp 28

oxf.h 28
rawtypes.h 28
run-time sources 13
sol2shr.tar file for Solaris 22
state.cpp 28
state.h 28
timer.cpp 29
timer.h 28

find

Fi

OMHeap 265
OMList 283
OMMap 304
OMStaticArray 415
OMUCaollection 512
OMUList 533
OMUMap 549

rst

_removeFirst OMList 288
_removeFirst OMUList 537
addFirst OMList 282
addFirst OMUList 532
getFirst OMList 285
getFirst OMUAbstractContainer 504
getFirst OMUCollection 514
getFirst OMUList 536
removeFirst OMList 289
removekFirst OMUList 539
Flags 278, 440
command for Rational Rhapsody 16
command-line 159
compilation 170
event 105
OMComponentState 227
OMList 278
OMUList 527
stopDelay 230
subState 327
frameworkEvent attribute 236
frameworklnstance attribute 351
Frameworks 20, 67
Ada 21
advantages of 1
build libraries 20
Ca3a
C++ 31
C++ properties 27
customizing 1, 3, 201
initializing 562
isFrameworkEvent 243
isFrameworklnstance 372
Java 22
modifying OXF 31
object execution 5
OXF 3,562
port number into connection point 9
properties 27
real-time 1
rebuilding 145
setFrameworkEvent 247
setFrameworklnstance 381
Solaris 22
start 567
starting the timer 494
VxWorks 164
free 334
Functions 165
callback 165

G

gen 361
GEN macro 354
GEN_BY_GUI macro 354
GEN_BY_X macro 355

Rational Rhapsody

575

Index

GEN_ISR macro 355
Generate
event 190
Generated macros 172
Generic event handling 402
Get
current system time 492
destination 240
getlld 241
get 342
getAOMThread 451
getAt
OMList 283
OMMap 304
OMStaticArray 416
OMUCaollection 513
OMUList 534
OMUMap 549
GetBuffer 433
getConcept
OMFina State 251
OMMapltem 310
OMState 404
getCount
OMList 284
OMMap 305
OMStack 397
OMStaticArray 416
OMUCallection 513
OMUList 535
OMUMap 550
getCurrent
OMUAbstractContainer 504
OMUCaollection 514
OMUList 535
getCurrentEvent 365
getDefaultMemoryManager 315
getDelay 477
getDestination 240
getDueTime 477
getElapsedTime 492
getElement
OMUListltem 543
OMUMapltem 555
getEventClass
OMFriendStartBehaviorEvent 253
OMFriendTimeout 256
getEventQueue 451
getFirst
OMList 285
OMUADbstractContainer 504
OMUCaollection 514
OMUList 536
getFirstConcept 285
getGuard
OMGuard 262
OMProtected 335

OMThread 451
getHandle 405
getinverseQueue 343
getKey
OMMap 305
OMUMap 550
getLast 286
getLastConcept 286
getLastState 405
GetLength 434
getlld 241
getMemory 316
OMAbstractMemoryAllocator 214
OMMemoryManager 316
getMemoryM anager
OMMemoryManager 316
OMMemoryManager class 316
OXF class 560
getNext
OMList 287
OMListltem 293
OMUAbstractContainer 505
OMUCallection 515
OMUList 536
OMUListltem 543
getOsHandle 452
getOsThreadEndClb 453
getQueue 343
getSize 515
OMQueue 344
OMStaticArray 417
getStepper 454
getSubState
OMOrState 329
OM State 406
getTheDefaultActiveClass 560
getTheTickTimerFactory 561
getThread 365
getTimeoutld 478
GNAT compiler 21
goNextAndPost 493
Guard
END_REACTIVE_GUARDED_SECTION
259
END_THREAD GUARDED_SECTION 259
getGuard OMGuard 262
getGuard OMProtected 335
getGuard OMThread 451
GUARD_OPERATION 259
OMGuard class 258
setEventGuard 380
setToGuardReactive 386
setToGuardThread 459
shouldGuardThread 460
START_DTOR_REACTIVE_GUARDED_SECTIO
N 259
START_DTOR_THREAD_GUARDED_SECTION

576

Frameworks and Operating Systems Reference

Index

260

START_REACTIVE_GUARDED_SECTION 260
START_THREAD_GUARDED_SECTION 260

GUARD_OPERATION macro 259

H

Handle

derived events 245

getHandle 405

getOsHandle 452

setHandle 408
handleEventNotConsumed 366
handleTONotConsumed 367
Head

increaseHead 344
Heap

class 263

empty 266

finding an element 265

remove elements from 266

removing elements 266
Helpers

OMMemoryManagerSwitch 318
Host 562

ID
of atimeout event 194
SetTimeoutld 483
IDE 165
IDE interface 165
IDF 203
Idletimer 10
Implementation 6
in
OM ComponentState 228
OM L eaf State 274
OMOrState 330
OM State 406
incarnateTimeout 368
incNonldleThreadCounter 493
increaseHead 344
increaseTail _ 344
Increment
setincrementNum 216
increment 270
Index
addAt OMCaollection 223
addAt OMUCollection 511
removing elements collections 226
removing elements from templ ate-free
collections 519
init
OXF 562
init OMTimerManager 494

Initialize
framework 562
init OMTimerManager 494
init OXF 562
initinstance 467
initinstance OM ThreadTimer 467
instance OMTimerManager 494
mutex 335
timer 494
initializeMutex 335
initiatePool 214
initlnstance
OMThreadTimer 467
OMTimerManager 494
inNullConfig 369
Instance
clearlnstance 490
initializing 467
initinstance OM ThreadTimer 467
initinstance OM TimerManager 494
isFrameworklnstance 372
setFrameworklInstance 381
thread 295
instance
OMMainThread 295
OMMainThread class 295
OMMemoryManagerSwitchHel per class 321
OMTimerManager 495
Integrated Development Environment (IDE) 165
Integrity 146
Interfaces
implementing 6
RiCOSEventFlag 45
Interprocess
communication 9
Interrupt
cbkBridge 490
InvokeExecutable property 167
InvokeMake property 21
IS EVENT_TYPE_OF macro 402
isActive 370
isBusy 370
isCancelledTimeout 242
isCompleted 407
isCurrentEvent 371
isDeleteAfterConsume 242
iSEmpty 306
OMHeap 266
OMList 287
OMQueue 345
OMStack 398
OMStaticArray 417
OMString 434
OMUCollection 516
OMUList 537
OMUMap 551
isFrameworkEvent 243

Rational Rhapsody

577

Index

isFrameworklnstance 372
isFull 345
islnDtor 373
isLogEmpty 321
isNotDelay 479
isRealEvent 244
isReal TimeModel 563
isTimeout 244
isTypeOf 245
isTypeOf method 245
isvalid 373
Item
removeltem 290
removeltem OMUL st 540

J

Javalanguage 22
jar command 175
libraries 17

K

Key
getKey OMMap 305
getKey OMUMap 550
removing 553

L

Last
getLast 286
getLastConcept 286
getLastState 405
removeLast OMList 291
removelLast OMUList 541
setl astState 409
Length
GetLength 434
Libraries 159
build framework 21
C 17
Ctracing 15
C++ 16
framework 20
Java 17
OXF 4
VxWorks 164
[1d attribute 237
setting 248
LIFO agorithm 186, 396
Link 8
List
empty 287
finding an element inalist 283
finding an element in atemplate-freelist 533
first element 285

next element 287
number of elements 284
removing all elements 289
removing elements 288
removing last element 291
lock
OMAnNdState 220
OMGuard 262
OMProtected 336
OMThread 454
lookUp
OMMap 306
OMUMap 551

M

m_eventGuard constant 356
m_grow attribute 338
m_head attribute 338
m_myQueue attribute 338
m_tail attribute 338
Macro
DECLARE_MEMORY_ALLOCATOR 471
defined in omprotected.h 259
END_REACTIVE_GUARDED_SECTION 259
END_THREAD_GUARDED_SECTION 259
GUARD_OPERATION 259
IS EVENT_TYPE_OF 402
OM_DECLARE_FRAMEWORK_MEMORY_ALL
OCATION_OPERATORS 402
OMDECLARE_GUARDED 259
OMReactive class 354
START_DTOR_REACTIVE_GUARDED_SECTIO
N 259
START_DTOR_THREAD_GUARDED_SECTION
260
START_REACTIVE_GUARDED_SECTION 260
START_THREAD_GUARDED_SECTION 260
Macros
generated 172
OMDECLARE_GUARED 332
predefined 173
Makefiles 5
MakeFileContent property 14, 169, 175
Makefiles 14, 145, 167
creating 14
creating new 16
linking 174
modifying 13
properties 168
target type 170
VxWorks samplefile 15
Map
finding an element in amap 304
finding an element in atemplate-free map 549
getting the key 305
looking up an element 306

578

Frameworks and Operating Systems Reference

Index

number of elements 305
removing an element 307

Maps
remove elements 552
remove elements from 307
removing all elements 308
template-free 553

Matured list
removing atimeout 499

maxTM 563

MemAlloc.h file 27

Memory
~OMAbstractMemoryAllocator 212
alocating 479
callMemoryPool IsSEmpty 213
getDefaultMemoryManager 315
getMemory 316
getMemory OMAbstractMemoryAllocator 214
getMemoryManager 560
OMADbstractMemoryAllocator class 212
OM SdfLinkedMemoryAllocator 215
pool 9
returnMemory OMAbstractMemoryAllocator 215
setMemoryManager 564

Memory management
getMemory 316
getMemoryM anager

OMMemoryManager class 316
OXF class 560

package 185
returnMemory 317

Memory pool 9

Message queue 8

Messages
gueues 5, 8

Methods
_gen 364
_removeFirst OMList 288
_removeFirst OMUList 537
~OMAbstractMemoryAllocator 212
~OMCollection 222
~OMDelay 231
~OMEvent 239
~OMGuard 261
~OMHeap 264
~OMList 279
~OMMainThread 295
~OMMap 301
~OMMapltem 310
~OMMemoryManager 314
~OM Protected 334
~OMQueue 341
~OMReactive 357
~OM Stack 397
~OMString 421
~OMThread 444
~OMThreadTimer 466

~OMTimeout 473
~OMTimerManager 489
~OMUMapltem 555

action OMThreadTimer 466
action OMTimerManager 489

add OMCollection 223

add OMHeap 265

add OMList 280

add OMMap 303

add OMStaticArray 415

add OMUCallection 510

add OMUList 530

add OMUMap 548

addAt OMCollection 223

addAt OMList 281

addAt OMUCaollection 511

addAt OMUList 531

addFirst OMList 282

addFirst OMUList 532

alocPool 213
animDeregisterForeignThread 557
animRegisterForeignThread 558
callMemoryPool IsEmpty 213
cancel Event 445

cancel Events 358

cancel Events OM Thread class 446
cbkBridge 490

cleanup 320

cleanupAllThreads 447
cleanupThread 447

clearInstance 490
CompareNoCase 432

connectTo OMListltem 293
connectTo OMUL.istltem 543
consumeEvent 358

consumeTime 491

createReal TimeTimer 217
createSimulatedTimeTimer 218
cserialize OMFriendStartBehaviorEvent 253
cserialize OMFriendTimeout 256
decNonldleThreadCounter 491
delay 559

Delete 240

Delete OMTimeout class 476
deleteMutex 334

destroyThread OMMainThread class 295
destroyThread OM Thread class 448
destroyTimer 492
discarnateTimeout 360

doBusy 361

doExecute 448

Empty 433

end 559

entDef OM L eaf State 273

entDef OMOrState 328

entDef OM State 403

enterState OM ComponentState 228

Rational Rhapsody

579

Index

enterState OM L eaf State 274 getFirst OMList 285
enterState OMOrState 328 getFirst OMUCollection 514
enterState OM State 404 getFirst OMUList 536
entHist 403 getFirstConcept 285
execute 449 getGuard OMGuard 262
exitState OM L eaf State 274 getGuard OMProtected 335
exitState OM OrState 329 getGuard OMThread 451
exitState OM State 404 getHandle 405
find getinverseQueue 343
OMStaticArray 415 getkey OMMap 305
OMUCaollection 512 getkey OMUMap 550
find OMHeap 265 getLast 286
find OMList 283 getLastConcept 286
find OMMap 304 getLastState 405
find OMULIst 533 GetLength 434
find OMUMap 549 getlld 241
findMemory 320 getMemory
free 334 OMMemoryManager 316
gen 361 getMemory OMAbstractMemoryAllocator 214
get 342 getMemoryManager
getAOMThread 451 OMMemoryManager 316
getAt OXF class 560
OMList 283 getNext
OMStaticArray 416 OMList 287
OMUCaollection 513 OMListltem 293
OMUMap 549 OMUADbstractContainer 505
getAt OMMap 304 OMUCaollection 515
getAt OMULIst 534 getNext OMUList 536
GetBuffer 433 getNext OMUL.istltem 543
getConcept OMFina State 251 getOsHandle 452
getConcept OMMapltem 310 getOSThreadEndClb 453
getConcept OM State 404 getQueue 343
getCount 284 getSize 515
getCount OMMap 305 getSize OMQueue 344
getCount OM Stack 397 getSize OM StaticArray 417
getCount OM StaticArray 416 getStepper 454
getCount OMUCollection 513 getSubState OM OrState 329
getCount OMUL.ist 535 getSubState OM State 406
getCount OMUMap 550 getTheDefaultActiveClass 560
getCurrent OMList 284 getTheTickTimerFactory 561
getCurrent OMUAbstractContainer 504 getThread 365
getCurrent OMUCollection 514 getTimeoutld 478
getCurrent OMULIist 535 goNextAndPost 493
getCurrentEvent 365 handleEventNotConsumed 366
getDefaultMemoryManager 315 handleTONotConsumed 367
getDelay 477 in OM ComponentState 228
getDestination 240 in OML eaf State 274
getDueTime 477 in OMOrState 330
getElapsedTime 492 in OM State 406
getElement OMUListitem 543 incarnateTimeout 368
getElement OMUMapltem 555 incNonldleThreadCounter 493
getEmpty 306 increaseHead 344
getEventClass OM FriendStartBehaviorEvent 253 increaseTail _ 344
getEventClass OMFriendTimeout 256 increment 270
getEventQueue 451 init OMTimerManager 494
getFirst init OXF 562
OMUADbstractContainer 504 initializeMutex 335

580 Frameworks and Operating Systems Reference

Index

initiatePool 214
initinstance OMThreadTimer 467
initinstance OM TimerManager 494
inNullConfig 369
instance
OMMemoryManagerSwitchHelper 321
OMTimerManager 495
instance OMMainThread 295
isActive 370
isBusy 370
isCancelledTimeout 242
isCompleted 407
isCurrentEvent 371
isDeleteAfterConsume 242
ISEmpty
OMString 434
iSEmpty
OMList 287
OMQueue 345
OMStack 398
OMStaticArray 417
OMUCollection 516
OMUMap 551
isEmpty OMHeap 266
isEmpty OMMap 306
isEmpty OMULIst 537
isFrameworkEvent 243
isFrameworklnstance 372
isFull 345
isinDtor 373
isLogEmpty 321
isNotDelay 479
isRealEvent 244
isTimeout 244
isTypeOf 245
isTypeof 245
isvalid 373
lock
OMProtected 336
OMThread 454
lock OMANdState 220
lock OMGuard 262
lookUp
OMUMap 551
lookUp OMMap 306
new 479
OMAnNdState 219
OMCollection 222
OM ComponentState 228
OMDelay 231
OMDestructiveString2X 435
OMEvent 238
OMFinal State 250
OMFriendStartBehaviorEvent 252
omGetEventQueue 454
OMGuard 261
OMHeap 264

OMLeaf State 273
OMList 279
OMListltem 292
OMMap 301
OMMapltem 309
OMMemoryManager 314
OMMemoryManagerSwitchHelper 319
OMProtected 333
OMQueue 341
OMReactive 357, 392
OMSdfLinkedMemoryAllocator 215
OMStack 396, 399
OM StartBehaviorEvent 400
OM State 403, 410
OMString 420
OMThread 442
OMTimeout 472
OMTimerManager 487
OMUMapltem 554
OSAL 34
pop 398
popNullConfig 374
push 399
pushNullConfig 375
put 346
queueEvent 455
recordMemoryAllocation 322
recordMemoryDeallocation 323
registerWithOM Reactive 375
remove
OMUCallection 517
remove OMCollection 224
remove OMHeap 266
remove OMList 288
remove OMMap 307
remove OMUList 538
remove OMUMap 552
removeAll OMCollection 225
removeAll OMList 289
removeAll OMMap 308
removeAll OMStaticArray 418
removeAll OMUCollection 518
removeAll OMUList 539
removeAll OMUMap 553
removeBylndex
OMUCallection 519
removeBylndex OMCollection 226
removeFirst OMList 289
removeFirst OMUList 539
removeltem OMList 290
removeltem OMUList 540
removeKey 553
removelLast OMList 291
removelast OMUList 541
reorganize OMCollection 226
reorganize OMUCollection 520
reset

Rational Rhapsody

581

Index

OM terator 271

OMUIterator 524
resetSize 435
resume 456
returnMemory 215

OMMemoryManager 317
returnMemory OMAbstractMemoryAllocator 215
rootState dispatchEvent 376
rootState_entdef 377
rootState serializeStates 378
runToCompletion 379
schedTm 456
serialize OMFriendStartBehaviorEvent 254
serialize OMFriendTimeout 257
serializeStates

OMReactive 379

OM State 408
serializeStates OM L eaf State 275
serializeStates OMOrState 330
set 497
setAllocator 216
SetAt 436
SetAt

OMStaticArray 418

OMUCollection 521
setCompleteStartBehavior 380
SetDefaultBlock 436
setDelay 480
setDeleteAfterConsume 246
setDestination 247
setDueTime 481
setElapsedTime 498
setElement 544
setEndOSThreadInDtor 458
setEventGuard 380
setFrameworkEvent 247
setFrameworklnstance 381
setHandle 408
setlncrementNum 216
setinDtor 382
setlastState 409
setlld 248
setMaxNull Steps 382
setMemoryManager 564
setPriority 459
setRelativeDueTime 481
setShouldDelete 383
setShouldTerminate 384
setState 482
setSubState OM OrState 331
setSubState OM State 409
setTheDefaultActiveClass 565
setTheTickTimerFactory 566
setThread 385
setTimeoutld 483
setToGuardReactive 386
setToGuardThread 459

setUpdateState 324
shouldCompleteRun 387
shouldCompleteStartBehavior 388
shouldDelete 389
shouldGuardThread 460
shouldTerminate 390
shouldUpdate 324
softUnschedTm 499
start
OMMainThread class 296
OMThread class 460
OXF 567
startBehavior 391
stopAllThreads 461
suspend 462
takeEvent OM ComponentState 229
takeTrigger 393
terminate 394
TimerManagerCallBack 219
top
OM Stack 399
top OMHeap 267
trim 267
undoBusy 395
unlock
OMProtected 336
OMThread 462
unlock OMAndState 220
unlock OMGuard 262
unschedTm
OMThread class 463
OMTimerManager class 500
update 267
value
OMIterator 271
OMUIlterator 525
wakeup 232
Model
testing 199
Modify
event consumption 178
Momentics IDE 162
Mutex 8,59
deleting 334
free in guarded operation 258
goNextAndPost 493
initializeMutex 335
lock 220
unlock 220
Mutual exclusion (mutex) 123
myStartBehaviorEvent attribute 351
myThread relation 356

N

Next (getNext)
OMList 287

582

Frameworks and Operating Systems Reference

In

dex

OMListltem 293
OMUAbstractContainer 505
OMUCollection 515
OMUList 536
OMUListltem 543

Null transition
decrementing 374
incrementing 375
maximum number 382
taking 379

Null transitions 369

numProgArgs 562

O
Object execution framework (OXF) 5
Objects

active 181

OM_DECLARE_FRAMEWORK_MEMORY_ALLOC

ATION_OPERATORS macro 402

OM_ENABLE_MEMORY_MANAGER_SWITCH

switch 322, 323
omabscon.h file 27
OMAbstractMemoryAllocator class 212
OMADbstractTick TimerFactory class 217
OMAnNdState class 219

constructor 219
omcollec.h file 27
OMCollection 186
OMCallection class 221

constructor 222
OM ComponentState class 227

constructor 228
omcon.h file 27
OMDECLARE_GUARDED macro 259
OMDefaultThread attribute 353
OMDelay class 181, 230

constructor 231

stopDelay flag 230
OMDestructiveString2X 435
OMEvent class 182, 233

attributes 237

Behavior package 177

constructor 238
OMEventAnyEventld attribute 237
OMEventCancelledEventld attribute 237
OMEventNullld attribute 237
OMEventOXFEndEventld attribute 238
OMEventTimeoutld attribute 238
OMFinal State class 249

constructor 250
OMFriendStartBehaviorEvent class 252

constructor 252
OMFriendTimeout class 255

constructor 255
omGetEventQueue method 454
OMGuard class 182, 258

4.0 changes 258
constructor 261
OMHeap 186
OMHeap class 263
constructor 264
omheap.h file 27
OMInfiniteL oop class 268
OMInterator 186
OM I terator class 268
constructor 269
OM Leaf State class 272
constructor 273
OMList 186
OMList class 276
constructor 279
omlist.n file 27
OMListltem class 292
constructor 292
OMMainThread class 181, 294
OMMap 186, 302
OMMap class 297
constructor 301
example 298
ommap.h file 27
OMMapltem class 309
OMMapltem constructor 309
OMMemoryManager class 311
constructor 314
OMMemoryManagerSwitchHel per constructor 319
OMMemoryManagerSwitchHelper switch 318
OMOrState class 327
constructor 328
OMOSConnectionPort class 12
OMOSEventFlag class 12
OMOSFactory class 12
OMOSM essageQueue class 12
OMOSMutex class 12
OMOSSemaphore class 12
OMOSSocket class 12
OMOSThread class 12
OMOSTimer class 12
timer service 10
omoutput.cpp file 28
omoutput.h file 28
OMProtected class 177, 182
constructor 333
declaration 332
omprotected.h file 28
OMQueue 186
OMQueue class 337
constructor 341
example 339
omqueue.h file 28
OMRDefaultStatus constant 352
OMReactive class 177, 179, 358
attributes 351
constants 352

Rational Rhapsody

583

Index

constructor 357

declaration 347

defines and macros 354

relations 355
omreactive.cpp file 28
omreactive.h file 28
OMRInDtor constant 353
OMRNullConfig constant 353
OMRNullConfigMask constant 353
OMROOT 31

OMRShouldCompl eteStartBehavior constant 353

OMRShouldDel ete constant 354
OMRShouldTerminate constant 354
omrStatus
doBusy 361
isBusy 370
undoBusy 395
omrStatus attribute 352
OMSdlfLinkedM emoryAllocator 215
OMStack 186
OM Stack class 396
constructor 396
omstack.h file 28
OM StartBehavior_id attribute 238
OM StartBehaviorEvent class 400
constructor 400
OM State class 401
constructor 403
omstatic.h file 28
OMStaticArray 27, 28, 186
OM StaticArray class 411
constructor 413
OMString 186
OMString class 419
constructor 420
omstring.cpp file 28
omstring.h file 28
OMThread class 177, 181
attributes 440
constructor 442
declaration 437
omthread.cpp file 28
omthread.h file 28
OMThreadTimer class 184
declaration 465
OMTimeout 473
OMTimeout class 183, 469
attribute 471
constructor 472
OMTimerManager attribute 486
OMTimerManager class 177, 183
constructor 487
declaration 484
OMTimerManagerDefaults class 184
declaration 502
omtypes.h file 28
OMUAbstractContainer class 503

OMUCallection class 506
constructor 508
OMUIterator class 522
constructor 523
OMUList class 526
constructor 528
example 527
OMUListltem class 542
constructor 542
OMUMap class 545
constructor 546
OMUMapltem class 554
constructor 554
Operating system
services 5
Operating systems
adtapters 7
new as default 25
real-time 5
RTOS 11
services 5, 32
Solaris 19
Operation
unconsumed 367
Operations
dispatch triggered 193
triggered 182, 347
virtual 32
operator 280
Operators
1= 428
*

OM terator 269
OMString 432
OMUIlterator 523
+
OMString 422
++
OMIterator 270
OMUIlterator 524
+= 423
<
OMString 430
<< 431
<= 427
= 424
== 473
OMString 425
>
OMString 429
>= 426
>> 431

OMStaticArray 414
OMString 421
OMUMap 547

new 479

584

Frameworks and Operating Systems Reference

Index

OMMap 302
OMTimeout 474, 475
OMUCaollection 509
OMUList 529
OS abstraction layer (OSAL) 5
os.hfile 28
OSAL 5
AbstractL ayer package 11
classes 37
methods 34
services 5
OSL ayer package 4
OSWrappers package 12
overflowMark attribute 486
OXF 3,5
end 559
general class 556
init 562
library 4
Start 567
working with 3
oxf.cpp file 28
oxf.hfile 28

P

Packages
AbstractL ayer for OSAL 11
behavioral 4, 177
containers 185
operating system 4
services 4

parent attribute 402

Pool
alocPool 213
callMemoryPool IsEmpty 213
initiatePool 214

pop 398

popNullConfig 374

Port 562

Ports
animation 9
communication 9
number 9

Predefined macros 173

Priority
setPriority 459

Processes
communication 8
lightweight 7

progArgs 562

Properties 24
Additional NumberOflInstances 9
BaseNumberOfinstances 9
C++ framework 27
CompileSwitches 170
customizing for anew RTOS 24

Environment 26
framework 27
InvokeExecutable 167
makefile 168
MakeFileContent 169, 175
modifying 13
RTOS 24

push 399

pushNullConfig 375

put 346

Q

Quality of service 200
Queue
event 190
full 345
get 343
getEventQueue 451
getinverseQueue 343
getQueue 343
increasing the head 344
increasing the tail 344
size 344
queueEvent 455
Queues
dynamically sized 186
message 8

R

Rate monotonic analysis 199
Rational Rhapsody

adapt to anew RTOS 13

deployment environment 5

framework 67

host machine 9

OXF 3

statecharts 2

supported container types 186
rawtypes.h file 28
Reactive object 177
Real time 563
Real-time 563

createReal TimeTimer 217

frameworks 1
Real-time operating system (RTOS) 5
Real-time Operating System(RTOS) 11
recordMemoryAllocation 322
recordMemoryDeallocation 323
Register

animRegisterForeignThread 558
register

registerWithOM Reactive 375
registerWithOM Reactive 375
Relations

OMReactive class 355

Rational Rhapsody

585

Index

Remove rootState serializeStates 378
_removeFirst 288 RTOS 5,11
al elements from list 289 adapting Rational Rhapsody to 13

element from list 290 classes 12

element from map 307 creating propertiesfor 24

first element from list 289 layered approach 6

first element from template-free list 539 makefile creating new 16

item from template-free list 540 relation to Rational Rhapsody applications 5
key 553 with Rational Rhapsody applications 5

last element 291 Run-time sources 13

last element from template-free list 541

runToCompletion 379

remove
OMCaollection 224

OMHeap 266 S
OMList 288 Samples
OMMap 307 IDF 203
OMUCollection 517 schedTm 456
OMUList 538 Schedule
OMUMap 552 delay 198
removeAll timeout 195
OMCollection 225 Semaphores 8, 67, 126
OMList 289 Sequence diagrams 108, 196, 199
OMMap 308 dispatch triggered operations 193

OMStaticArray 418
OMUCollection 518
OMUList 539
OMUMap 553
removeBylndex
OMCollection 226
OMUCollection 519

dispatched event 191
for documentation 178
generation & queue events 190

seridize 254

cserialize OMFriendStartBehaviorEvent 253

OMFriendStartBehaviorEvent 254
OMFriendTimeout 257

removekirst serializeStates
OMLlst 289 OMLeaf State 275
OMUList 539 OMOrState 330

removeltem OMReactive 379
OMList 290 OM State 408
OMUList 540 Services

removeKey 553 communication 9

removel ast operating system 5
OMList 291 operating systems 32
OMUList 541 package 4, 185

reorganize synchronization 5, 8
OMCollection 226 tasking 7
OMUCallection 520 timer 10

reset timing 93
OMlterator 271 tracingin C 17
OMUIlterator 524 Set

resetSize 435 destination 247

resume setDeleteAfterConsume 246
OMThread 456 set 497
OMTimerManager 496 setAllocator 216

returnMemory 317 SetAt 436
OMADbstractMemoryAllocator 215 setAt

OMMemoryManager 317
RiCOSTimerManager 93
rootState attribute 356
rootState dispatchEvent 376
rootState entDef 377

OMStaticArray 418
OMUCaollection 521

setCompleteStartBehavior 380
SetDefaultBlock 436
setDelay 480

586

Frameworks and Operating Systems Reference

Index

setDeleteAfterConsume 246
setDestination 247
setDueTime 481
setElapsedTime 498
setElement 544
setEndOSThreadlnDtor 458
setEventGuard 380
setFrameworkEvent 247
setFrameworklInstance 381
setHandle 408
setlncrementNum 216
setinDtor 382
setLastState 409
setlld 248
setMaxNull Steps 382
setMemoryManager 564
setPriority 459
setRelativeDueTime 481
setShouldDelete 383
setShouldTerminate 384
setState 482
setSubState
OMOrState 331
OM State 409
setTheDefaultActiveClass 565
setTheTickTimerFactory 566
setThread 385
setTimeoutld 483
setToGuardReactive 386
setToGuardThread 459
setUpdateState 324
shouldCompleteRun 387
shouldCompleteStartBehavior 388
shouldDelete 389
shouldGuardThread 460
shouldTerminate 390
shouldUpdate 324
Simulated time 563
consumeTime 491
createSimulatedTimeTimer 218
goNextAndPost 493
Size
getSize 515
getSize OMQueue 344
getSize OM StaticArray 417
resetSize 435
stack 7
size attribute 412
Sockets 129
softUnschedTm 499
Solaris 19
makefile 16
Solaris systems 22
Stack 396
Stack size 7
Stacks 186
Start 567

Start
OMMainThread class 296
OMThread class 460
START_DTOR_REACTIVE_GUARDED_SECTION
macro 259
START_DTOR_THREAD_GUARDED_SECTION
macro 260
START_REACTIVE_GUARDED_SECTION
macro 260
START_THREAD_GUARDED_SECTION macro 260
startBehavior 391
State
enterState OM ComponentState 228
enterState OM State 404
exitState 404
getLastState 405
getSubState OMOrState 329
OMState 401
seridizeState OM L eaf State 275
seriaizeState OM OrState 330
setlastState 409
setState 482
setSubState OMOrState 331
setSubState OM State 409
State machine 2
null transitions 369
shouldDelete 389
termination connector 383
state.cpp file 28
state.h file 28
Statecharts 1, 2, 179, 182, 183, 199, 347
animated 199
Static array
empty 417
example 412
finding an element 415
number of elements 416
removing al elements 418
Stepper
getStepper 454
stopAllThreads 461
String
default block 436
length 434
Substate
getSubState OM State 406
getting 329
setting 331
suspend 462
Switches
OMMemoryManagerSwitchHelper 318
Synchronization 59
services 5, 8
Synchronous event
consuming 393
System time
getting 492

Rational Rhapsody

587

Index

setting 498

T
Tall
increasing 344
takeEvent
OM ComponentState 229
OM Reactive 392
OM State 410
processing events 179
takeTrigger 393
Target
type 170
Target environment
customizing the OXF 11
Targets 159
Tasking services 5, 7
TCP/IP protocol 9
Template-free
adding elementsto alocation 511
current element 514
number of elements 513
Template-free collection
empty 516
first element 514
removing all elements 518
removing elements 517
removing elements by index 519
reorganizing 520
Template-freelist
current element 535
empty 537
finding an element 533
first element 536
number of elements 535
removing all elements 539
removing item 540
Template-free map
empty 551
getting the key 550
looking up an element 551
number of elements 550
Terminate 394
setShouldTerminate 384
shouldTerminate 390
Termination connector
setShouldDelete 383
shouldDelete 389
Test 199
theLink attribute 412
Thread 7
thread attribute 441
Threads 7
action OMThreadTimer class 466
action OMTimerManager class 489
alowDeletelnThreadsCleanup 445

animDeregisterForeignThread 557
animRegisterForeignThread 558
cleanupAllThreads 447
ending 453
getAOMThread 451
getThread 365
instance 295
operating system ID 452
resuming a suspended 456
setEndOST hreadinDtor 458
setPriority 459
setThread 385
shouldGuardThread 460
stack size 7
start 460
stopAllThreads 461
suspending 462
user-defined 7
wrapper 7
Tick timer
getTheTickTimerFactory 561
setTheTickTimerFactory 566
tickTime 563
Time
consumeTime 491
getElapsedTime 492
goNextAndPost 493
real 563
setElapsedTime 498
simulated 563
Timeout class
Behavior package 177
timeoutDelayld attribute 471
Timeouts 2, 194, 469
canceling arequest 500
customizing behavior 184
delaying 197
delegating arequest 497
deleting from heap 476
discarnateTimeout 360
dispatching 184
dispatching SD 196
getDelay 477
getDueTime 477
getTimeoutld 478
ID 194
incarnateTimeout 368
isCancelledTimeout 242
isNotDelay 479
isTimeout 244
maxTM 563
posting 183
removing from the matured list 499
schedTm 456
scheduling 195
setDelay 480
setDueTime 481

588

Frameworks and Operating Systems Reference

Index

setRelativeDueTime 481
setTimeoutld 483
unschedTm OMThread class 463
unscheduling 197
timeouts 488
Timer service 5
timer.cpp file 29
timer.h file 28
TimerManagerCallBack 219
TimerMaxTimeouts property 488
TimerResol ution property
system timer 488
Timers 10, 183
createReal TimeTimer 217
createSimulatedTimeTimer 218
getTheTickTimerFactory 561
idle 10
starting 494
tick 10
TimerManagerCallBack 219
Timing services 93
toGuardReactive attribute 352
setting 386
ToGuardThread attribute
setting 459
toGuardThread attribute 441
top
OMHeap 267
OMStack 399
Transition
decrementing null 374
default 377
incrementing null 375
null 369, 382
taking null 379
Trigger 2
take Trigger methods 347
takeTrigger 393
transitions 189

Triggered operations 182, 347
dispatching 193
unconsumed 367

trim 267

U

UML 1, 2, 3, 200
active object 181
time event 469

undoBusy 395

unlock
OMAnNdState 220
OMGuard 262
OMProtected 336
OMThread 462

unschedTm
OMThread class 463
OMTimerManager 500

Unschedule
timeout 197

update 267

\%

Validate

new adapter 30
vaue

OM lterator 271

OMUlterator 525
Virtual operations 32
VxWorks 164

W

wakeup 232
Windows systems 20
Wrapper threads 7

Rational Rhapsody

589

Index

590 Frameworks and Operating Systems Reference

	Contents
	Frameworks and Operating Systems
	Real-Time Frameworks
	Rational Rhapsody Statecharts
	The Object Execution Framework (OXF)
	Working with the Object Execution Framework
	The OXF Library

	Rational Rhapsody Applications and the RTOS
	Operating System Abstraction Layer (OSAL)
	Threads
	Stack Size
	Synchronization Services
	Message Queues
	Communication Port
	Timer Service

	Real-time Operating System (RTOS)
	AbstractLayer Package (OSAL)
	Classes
	OSWrappers Package
	Adapting Rational Rhapsody for a New RTOS
	Run-Time Sources
	Adding the New Adapter

	Creating the Batch File and Makefiles
	Sample <env>build.mak File
	Creating New Makefiles
	OXF Versions
	Animation Libraries
	C++ Libraries
	C Libraries
	Java Libraries

	Implementing the Adapter Classes
	Modifying rawtypes.h
	Other Operating System-Related Modifications

	Building the Framework Libraries
	Building the C or C++ Framework for Windows Systems
	Building the C or C++ Framework in Two Steps
	Building the C or C++ Framework in One Step

	Building the Ada Framework
	Building the Java Framework
	Building the Framework for Solaris Systems

	Creating Properties for a New RTOS
	Modifying the site<lang>.prp Files
	Setting the Environment
	Configuring the OXF Properties for the C++ Framework

	Validating the New Adapter
	Modifying the Framework
	Implementing the Abstract Factory
	Plugging in the Factory
	Defining the Virtual Operations
	The instance Function

	OSAL Methods

	The OSAL Classes
	Rational Rhapsody Developer for C
	RiCOSConnectionPort Class
	create
	destroy
	cleanup
	init
	Connect
	Send
	SetDispatcher

	RiCOSEventFlag Interface
	create
	destroy
	cleanup
	init
	reset
	signal
	wait

	RiCOSMessageQueue Class
	create
	destroy
	cleanup
	init
	get
	getMessageList
	isEmpty
	isFull
	pend
	put

	RiCOSMutex Class
	create
	destroy
	cleanup
	init
	free
	lock

	RiCOSOXF Class
	RiCOSEndApplication
	RiCOSOXFInitEpilog

	RiCOSSemaphore Class
	create
	destroy
	cleanup
	init
	signal
	wait

	RiCOSSocket Class
	create
	destroy
	cleanup
	init
	createSocket
	receive
	send

	RiCOSTask Class
	create
	destroy
	cleanup
	init
	endMyTask
	endOtherTask
	exeOnMyTask
	getCurrentTaskHandle
	getOSHandle
	getTaskEndClbk
	resume
	setEndOSTaskInCleanup
	setPriority
	start
	suspend

	RiCOSTimer
	create
	destroy
	cleanup
	init

	RiCHandleCloser Class

	Rational Rhapsody Developer for C++
	OMEventQueue Class
	OMEventQueue
	getOsQueue

	OMMessageQueue Class
	OMOS Class
	endApplication
	endProlog
	initEpilog

	OMOSConnectionPort Class
	~OMOSConnectionPort
	Connect
	Send
	SetDispatcher

	OMOSEventFlag Class
	~OMOSEventFlag
	getOsHandle
	reset
	signal
	wait

	OMOSFactory Class
	instance
	createOMOSConnectionPort
	createOMOSEventFlag
	createOMOSIdleTimer
	createOMOSMessageQueue
	createOMOSMutex
	createOMOSSemaphore
	createOMOSThread
	createOMOSTickTimer
	createOMOSWrapperThread
	delayCurrentThread
	getCurrentThreadHandle
	waitOnThread

	OMOSMessageQueue Class
	~OMOSMessageQueue
	get
	getMessageList
	getOsHandle
	isEmpty
	isFull
	pend
	put
	setOwnerProcess

	OMOSMutex Class
	~OMOSMutex
	free
	getOsHandle
	lock
	unlock

	OMOSSemaphore Class
	~OMOSSemaphore
	getOsHandle
	signal
	wait

	OMOSSocket Class
	~OMOSSocket
	Close
	Create
	Receive
	Send

	OMOSThread Class
	~OMOSThread
	exeOnMyThread
	getOsHandle
	getThreadEndClbk
	resume
	setEndOSThreadInDtor
	setPriority
	start
	suspend

	OMOSTimer Class
	~OMOSTimer
	getOsHandle

	OMTMMessageQueue Class
	OMTMMessageQueue
	~OMTMMessageQueue
	get
	getMessageList
	getOsHandle
	isEmpty
	pend
	putVisibility

	Rebuilding the Rational Rhapsody Framework
	Borland
	INTEGRITY
	Compiling and Building a Rational Rhapsody Sample
	Downloading the Image and Running the Application
	Modifying the Files
	Building the Kernel
	Downloading the Kernel Dynamically
	Integrating INTEGRITY Application Images with the Kernel
	Animating the Image

	Linux
	Building the Linux Libraries
	Creating and Running Linux Applications

	MultiWin32
	Stepping Through the Generated Application Using MultiWin32
	Stepping Through the OXF Using MULTI

	OSE
	Rebuilding the Framework
	Using Command-Line Attributes and Flags
	Editing the Batch Files

	QNX
	Using Momentics
	Using ftp
	Message Queue Implementation

	VxWorks
	Integrated Development Environment (IDE)
	Defines
	Structures
	Functions

	Makefiles
	Creating a Make.bat File
	Running the Batch File
	Redefining Makefile-Related Properties
	Redefining the MakeFileContent Property
	Target Type
	Compilation Flags
	Commands Definitions
	Generated Macros
	Predefined Macros
	Generated Dependencies
	Makefile Linking Instructions
	Java Users

	Active Behavior Framework
	Active and Reactive Classes
	Active Classes that are Not Reactive
	Creating a Reactive Class that Consumes Events
	Creating a Statechart as Documentation
	Modifying a Class Event Consumption

	OMReactive Class
	OMThread Class
	OMMainThread Class
	OMDelay Class

	OMProtected Class
	OMGuard Class
	OMEvent Class
	OMTimeout Class
	OMTimerManager Class
	Customizing Timeout Manager Behavior
	OMThreadTimer Class
	OMTimerManagerDefaults Class

	Services Package
	MemoryManagement Package
	Containers Package

	Event Handling
	Events
	Generating and Queuing an Event
	Dispatching an Event
	Canceling a Single Event
	Canceling All Events to a Destination
	Dispatching a Triggered Operation

	Timeouts
	Scheduling a Timeout
	Dispatching a Timeout
	Unscheduling a Timeout
	Delaying a Timeout

	Analyzing and Customizing
	Model-level Debugging and Analysis
	Customizing the Framework

	The Rational Rhapsody Interrupt-Driven Framework (IDF)
	Creating a Sample IDF Project
	Adapting the Framework for a Specific Target
	Limitations of the IDF

	OXF Classes and Methods
	OMAbstractMemoryAllocator Class
	~OMAbstractMemoryAllocator
	allocPool
	callMemoryPoolIsEmpty
	getMemory
	initiatePool
	OMSelfLinkedMemoryAllocator
	returnMemory
	setAllocator
	setIncrementNum

	OMAbstractTickTimerFactory Class
	createRealTimeTimer
	createSimulatedTimeTimer
	TimerManagerCallBack

	OMAndState Class
	OMAndState
	lock
	unlock

	OMCollection Class
	OMCollection
	~OMCollection
	add
	addAt
	remove
	removeAll
	removeByIndex
	reorganize

	OMComponentState Class
	OMComponentState
	enterState
	in
	takeEvent

	OMDelay Class
	OMDelay
	~OMDelay
	wakeup

	OMEvent Class
	Attributes
	Constants
	OMEvent
	~OMEvent
	Delete
	getDestination
	getlId
	isCancelledTimeout
	isDeleteAfterConsume
	isFrameworkEvent
	isRealEvent
	isTimeout
	isTypeOf
	setDeleteAfterConsume
	setDestination
	setFrameworkEvent
	setlId

	OMFinalState Class
	OMFinalState
	getConcept

	OMFriendStartBehaviorEvent Class
	OMFriendStartBehaviorEvent
	cserialize
	getEventClass
	serialize

	OMFriendTimeout Class
	OMFriendTimeout
	cserialize
	getEventClass
	serialize

	OMGuard Class
	OMGuard
	~OMGuard
	getGuard
	lock
	unlock

	OMHeap Class
	OMHeap
	~OMHeap
	add
	find
	isEmpty
	remove
	top
	trim
	update

	OMInfiniteLoop Class
	OMIterator Class
	OMIterator
	operator *
	operator ++
	increment
	reset
	value

	OMLeafState Class
	OMLeafState
	entDef
	enterState
	exitState
	in
	serializeStates

	OMList Class
	OMList
	~OMList
	operator []
	add
	addAt
	addFirst
	find
	getAt
	getCount
	getCurrent
	getFirst
	getFirstConcept
	getLast
	getLastConcept
	getNext
	isEmpty
	_removeFirst
	remove
	removeAll
	removeFirst
	removeItem
	removeLast

	OMListItem Class
	OMListItem
	connectTo
	getNext

	OMMainThread Class
	~OMMainThread
	destroyThread
	instance
	start

	OMMap Class
	OMMap
	~OMMap
	operator []
	add
	find
	getAt
	getCount
	getKey
	isEmpty
	lookUp
	remove
	removeAll

	OMMapItem Class
	OMMapItem
	~OMMapItem
	getConcept

	OMMemoryManager Class
	OMMemoryManager
	~OMMemoryManager
	getDefaultMemoryManager
	getMemory
	getMemoryManager
	returnMemory

	OMMemoryManagerSwitchHelper Class
	OMMemoryManagerSwitchHelper
	~OMMemoryManagerSwitchHelper
	cleanup
	findMemory
	instance
	isLogEmpty
	recordMemoryAllocation
	recordMemoryDeallocation
	setUpdateState
	shouldUpdate

	OMNotifier Class
	notifyToError
	notifyToOutput

	OMOrState Class
	OMOrState
	entDef
	enterState
	exitState
	getSubState
	in
	serializeStates
	setSubState

	OMProtected Class
	OMProtected
	~OMProtected
	deleteMutex
	free
	getGuard
	initializeMutex
	lock
	unlock

	OMQueue Class
	OMQueue
	~OMQueue
	get
	getCount
	getInverseQueue
	getQueue
	getSize
	increaseHead_
	increaseTail_
	isEmpty
	isFull
	put

	OMReactive Class
	OMReactive
	~OMReactive
	cancelEvents
	consumeEvent
	discarnateTimeout
	doBusy
	gen
	_gen
	getCurrentEvent
	getThread
	handleEventNotConsumed
	handleTONotConsumed
	incarnateTimeout
	inNullConfig
	isActive
	isBusy
	isCurrentEvent
	isFrameworkInstance
	isInDtor
	isValid
	popNullConfig
	pushNullConfig
	registerWithOMReactive
	rootState_dispatchEvent
	rootState_entDef
	rootState_serializeStates
	runToCompletion
	serializeStates
	setCompleteStartBehavior
	setEventGuard
	setFrameworkInstance
	setInDtor
	setMaxNullSteps
	setShouldDelete
	setShouldTerminate
	setThread
	setToGuardReactive
	shouldCompleteRun
	shouldCompleteStartBehavior
	shouldDelete
	shouldTerminate
	startBehavior
	takeEvent
	takeTrigger
	terminate
	undoBusy

	OMStack Class
	OMStack
	~OMStack
	getCount
	isEmpty
	pop
	push
	top

	OMStartBehaviorEvent Class
	Animating Start Behavior
	OMStartBehaviorEvent

	OMState Class
	OMState
	entDef
	entHist
	enterState
	exitState
	getConcept
	getHandle
	getLastState
	getSubState
	in
	isCompleted
	serializeStates
	setHandle
	setLastState
	setSubState
	takeEvent

	OMStaticArray Class
	OMStaticArray
	~OMStaticArray
	operator []
	add
	find
	getAt
	getCount
	getSize
	isEmpty
	removeAll
	setAt

	OMString Class
	OMString
	~OMString
	Operator[]
	operator +
	operator +=
	operator =
	operator ==
	operator >=
	operator <=
	operator !=
	operator >
	operator <
	operator <<
	operator >>
	operator *
	CompareNoCase
	Empty
	GetBuffer
	GetLength
	IsEmpty
	OMDestructiveString2X
	resetSize
	SetAt
	SetDefaultBlock

	OMThread Class
	OMThread
	~OMThread
	allowDeleteInThreadsCleanup
	cancelEvent
	cancelEvents
	cleanupAllThreads
	cleanupThread
	destroyThread
	doExecute
	execute
	getAOMThread
	getEventQueue
	getGuard
	getOsHandle
	getOSThreadEndClb
	getStepper
	lock
	omGetEventQueue
	queueEvent
	resume
	schedTm
	setEndOSThreadInDtor
	setPriority
	setToGuardThread
	shouldGuardThread
	start
	stopAllThreads
	suspend
	unlock
	unschedTm

	OMThreadTimer Class
	~OMThreadTimer
	action
	initInstance

	OMTimeout Class
	OMTimeout
	~OMTimeout
	operator ==
	operator >
	operator <
	Delete
	getDelay
	getDueTime
	getTimeoutId
	isNotDelay
	new
	setDelay
	setDueTime
	setRelativeDueTime
	setState
	setTimeoutId

	OMTimerManager Class
	OMTimerManager
	~OMTimerManager
	action
	cbkBridge
	clearInstance
	consumeTime
	decNonIdleThreadCounter
	destroyTimer
	getElapsedTime
	goNextAndPost
	incNonIdleThreadCounter
	init
	initInstance
	instance
	resume
	set
	setElapsedTime
	softUnschedTm
	suspend
	unschedTm

	OMTimerManagerDefaults Class
	OMUAbstractContainer Class
	~OMUAbstractContainer
	getCurrent
	getFirst
	getNext

	OMUCollection Class
	OMUCollection
	~OMUCollection
	operator []
	add
	addAt
	find
	getAt
	getCount
	getCurrent
	getFirst
	getNext
	getSize
	isEmpty
	remove
	removeAll
	removeByIndex
	reorganize
	setAt

	OMUIterator Class
	OMUIterator
	operator *
	operator ++
	reset
	value

	OMUList Class
	OMUList
	~OMUList
	operator []
	add
	addAt
	addFirst
	find
	getAt
	getCount
	getCurrent
	getFirst
	getNext
	isEmpty
	_removeFirst
	remove
	removeAll
	removeFirst
	removeItem
	removeLast

	OMUListItem Class
	OMUListItem
	connectTo
	getElement
	getNext
	setElement

	OMUMap Class
	OMUMap
	~OMUMap
	operator []
	add
	find
	getAt
	getCount
	getKey
	isEmpty
	lookUp
	remove
	removeAll
	removeKey

	OMUMapItem Class
	OMUMapItem
	~OMUMapItem
	getElement

	OXF Class
	animDeregisterForeignThread
	animRegisterForeignThread
	delay
	end
	getMemoryManager
	getTheDefaultActiveClass
	getTheTickTimerFactory
	init
	setMemoryManager
	setTheDefaultActiveClass
	setTheTickTimerFactory
	start

	Index

